6. *5*-Problem on a Family of Weakly Pseudoconvex Manifolds

By Hideaki KAZAMA*) and Kwang Ho SHON**)

(Communicated by Kôsaku Yosida, M. J. A., Jan. 13, 1986)

1. In the case of weakly pseudoconvex manifolds the $\bar{\partial}$ -problem depends not only on boundary conditions, but also on complex structures ([2, 3, 4, 5, 7, 8]). In this paper we investigate the $\bar{\partial}$ -problem for the Picard variety Pic^o (T^n) of a complex *n*-dimensional torus T^n , which is regarded as a family of weakly pseudoconvex manifolds. For this problem we find a criterion given by the theory of Diophantine approximation. Full details will be published elsewhere.

2. Let $E \in \operatorname{Pic}^{\circ}(T^n)$. Then E is a holomorphic line bundle on T^n with Chern class zero. By a result of [1] we find a proper weakly plurisub-harmonic C^{∞} -function $\Phi: E \to [0, \infty)$. Thus, we can regard $\operatorname{Pic}^{0}(T^n)$ as a family of noncompact weakly pseudoconvex manifolds. Since $\operatorname{Pic}^{0}(T^n)$ is isomorphic to a complex *n*-dimensional torus $T^{n*} = C^n / \Lambda$, we can define on $\operatorname{Pic}^{0}(T^n)$ an invariant distance $d(E, F) := \min \{ ||a-b+c||; E=a+\Lambda, F=b+\Lambda \in C^n / \Lambda, c \in \Lambda \}$, where $||(z_1, \dots, z_n)|| := \max |z_i|$.

Theorem. Let $E \in Pic^{0}(T^{n})$ and O the structure sheaf of E. Then E must be one of the following types :

(1) If $d(1, E^{l}) = 0$ for some $l \ge 1$, then $H^{p}(E, O)$ is an infinite-dimensional Hausdorff space $(1 \le p \le n)$;

(2) If there exists a>0 such that $\exp(-al) \leq d(1, E^{\iota})$ for any $l \geq 1$, then $\dim H^p(E, O) = {n \choose p} (1 \leq p \leq n)$;

(3) If $d(1, E^l) \neq 0$ for any $l \ge 1$ and $\liminf_{l \to \infty} \exp(al)d(1, E^l) = 0$ for any a > 0, then $H^p(E, O)$ is not Hausdorff $(1 \le p \le n)$.

Further let P_1 , P_2 and P_3 be the subsets of Pic⁰ (T^n) consisting of the elements of the above types (1), (2) and (3), respectively. Then P_i is non-empty (i=1, 2, 3), $P_1 \cup P_3$ is of Lebesgue measure zero and

 $\operatorname{Pic}^{0}(T^{n}) = P_{1} \cup P_{2} \cup P_{3}$ (disjoint).

Remark. In comparison with strongly pseudoconvex manifolds, this theorem shows that a strange phenomenon occurs for weak pseudoconvexity. We have $P_2 \cup P_3 = \{E \in \operatorname{Pic}^0(T^n); H^0(E, O) = C\}$. E contains T^n as its zero section. If $E \in P_2$, then $H^p(E, O) \cong H^p(T^n, O_{T^n})$. This is similar to the case of a strongly pseudoconvex manifold and its exceptional set. But if $E \in P_3$, there exists a great difference from strong pseudoconvexity.

Proof. Let $E \in \text{Pic}^{0}(T^{n})$. We have a bireal-analytic isomorphism T^{n}

^{*)} Department of Mathematics, College of General Education, Kyushu University, Ropponmatsu, Fukuoka, 810 Japan.

^{**)} Department of Mathematics, Pusan National University, Pusan, 607 Korea.