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(Communicated by Kbsaku YOSIDA, M.J.A., May 12, 1986)

1. Introduction. We shall consider necessary and sufficient condi-
tions or a meromorphic function to be normal or Yosida ([1], [6]).

A function f meromorphic in D=
/c(f) sup (1

z@D

where f=lf’l/(l+lfl) is the spherical derivative. In terms of the non-
Euclidean hyperbolic distance:

a(z, w)=tanh-’ I(z)l,
where

ew(z) (z-- w) / (1 z), z, w e D,
the non-Euclidean open disk of center a e D and radius tanh-’ p (0<p=<l)
is given by

/(a, p)--
Theorem 1. Let f be meromorphic in D. Then the following are

mutually equivalent.
(1) f is normal.
(2) For each A>O there exists p e (0, 1) such that

sup sup f(z)-f(a)(1.1) <A.
,e e(,.) l q- f(a)f(z)

( 3 ) There exist p and in (0, 1) such that

(1.2) sup f(z)--f(a) dxdy
a<l,l< (,,) l+f(a)f(z) (1--1zlZ)

Here, (f(z)--f(a))/(l+f(a)f(z))=l/f(z) if f(a)=c. We note that
(1-1zl) -z dxdy is the non-Euclidean area element at z=x+iy e D.

A function f meromorphic in C={lz]<
l(f) sup f(z)

See [2], [3], [4], and [5]. We next consider the Euclidean disks"
U(a, p)-{[z-al<p}, a

Theorem 2. Let f be meromorphic in C. Then the following are
mutually equivalent.
( 4 ) f is Yosida.
(5) For each A>O there exists p e (0, c) such that

(1.3) sup sup f(z)-- f(a) I< A.
ec e(,.) l+f(a)f(z)

(6) There exist p and in (0, oo) such that

(1.4) sup f(z)--f(a) 12dxdy<oo.a<ll< (,p) 1 +f(a)f(z)


