5. On the Automorphism Groups of a Compact Bordered Riemann Surface of Genus Five

By Kenji NAKAGAWA NTT, Research Laboratories

(Communicated by Kôsaku YOSIDA, M. J. A., Jan. 13, 1986)

§1. Introduction. Let R be a compact bordered Riemann surface of genus g with k boundary components. If $2g+k-1\geq 2$, the automorphism group of R is a finite group. Then we put N(g, k) to be the maximum order of automorphism groups of R where the maximum is taken over all R of genus g with k boundary components. It is well known that N(g, k) is equal to the maximum order of automorphism groups of Riemann surfaces of genus g deleted k points, and that every automorphism group of R is isomorphic to that of a compact Riemann surface (Oikawa [6]). For every $k\geq 0$, N(0, k), N(1, k), N(2, k), N(3, k) and N(4, k) are determined by Heins [2], Oikawa [6], Tsuji [7], Tsuji [8] and Kato [4], respectively. In the present paper, we shall determine N(5, k).

§2. Notation. Let S be a compact Riemann surface of genus $g \ge 2$, G be a conformal automorphism group of S and N be the order of G. Let $S_0=S/G$ be the quotient surface with conformal structure induced from S through π , where π is the projection mapping from S onto S_0 . Let g_0 be the genus of S_0 . At $p \in S$ and at $p_0 = \pi(p) \in S_0$, by a suitable choice of local parameters, π is represented locally by $z_0 = z^{\nu}$, where ν is a positive integer, z and z_0 are the local parameters at p, p_0 , respectively. If $\nu > 1$, p is called a branch point of multiplicity ν . If $\pi(p_1) = \pi(p_2)$ ($p_1, p_2 \in S$), then multiplicity at p_1 is equal to that at p_2 . Therefore we can define the multiplicity over $p_0 \in S_0$ by the multiplicity at $p \in \pi^{-1}(p_0)$. Let t be the number of the points in S_0 which are the projections of all branch points. We call the set of integers g_0 and all multiplicities ν_1, \dots, ν_t the signature of G and denote it by $(g_0; \nu_1, \dots, \nu_t)$. Without loss of generality, we may assume $\nu_1 \leq \nu_2 \leq \cdots$ $\leq \nu_t$. For simplicity, we shall denote $(0; \nu_1, \dots, \nu_t)$ by (ν_1, \dots, ν_t) .

§3. Lemmas.

Lemma 1 (Wiman [9], Nakagawa [5]). If ν is a multiplicity of G then $2 \leq \nu \leq 4g+2$.

Lemma 2. There exists neither an automorphism of order 7 nor of order 9 on any compact Riemann surface of genus 5.

Lemma 3. For all $k \ge 0$, $N(5, k) \ge 8$.

We are going to determine whether the automorphism group with a given signature exists or not on a compact Riemann surface of genus 5. By Lemma 3, it is not necessary to consider the groups of order $N \leq 8$. We assume N > 8. By the Riemann-Hurwitz relation, an easy calculation