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0. Introduction. The purpose of this note is to state several results
in my Master Thesis [7]. The details will be published elsewhere. The
main theorem of this note is Theorem 3. By this theorem, if K, has a good
Zariski decomposition, then the canonical ring of X is finitely generated.
Theorem 1 and Theorem 2 are key theorems to prove Theorem 3. Theorem
5 is a characterization of a nef and good divisor by p,. All varieties in
this note are assumed to be defined over an algebraically clesed field of
characteristic zero.

1. Notation. Let X be an algebraic scheme. We denote the group
of Cartier divisors on X by Div(X). For a non-zero rational function ¢
on X, the principal Cartier divisor defined by ¢ is denoted by div (¢). For
D,, D, e Div (X)QR, we say D, is R-linear equivalent to D,, which is denoted
by D,~gD,, if there exists a positive integer m and exists a non-zero
rational function ¢ on X such that D,=D,+ (1/m)div(¢). For a real
number a, the lounding-up, the lounding-down, the nearest integer and
the fractional part of ¢ are denoted by Mo, [a], (a) and {a} respectively,
where in case {¢}=1/2, we define {a>="a1if a>0, (a)=[a] if a<<0. From
now on, we assume X is non-singular. Let D be an element of Div(X)®R
and D=3 ,a,D, the irreducible decomposition of D. Then we set D7
=>Ta,'D,, [D1=>;[a]D;, {(D)=>;{a;»D, and {D}=>",{a;}D,. Let Y be
an ideal sheaf of @y and « a point of X (not necessarily closed). Then we
define

ord, (J)=max{a € NU{co}| JOx,.Smi} and ord, (D)=733; a; 0rd, (Ox(—D,)),

where n, is the maximal ideal of @ ,. We furthermore assume X is com-
plete. We set #(X, D)=max,, {«(X, [mD])}. If x(X, D)=dim X, D is called
big. D is called good if there exists a birational morphism z: Y—X of
non-gingular complete varieties and exists a fiber space h: Y—Z of non-
singular complete varieties such that z*(D)~ p h*(M) for some big element
M of Div(Z)®R. Next, we congider the relative case. Let X be a non-
singular algebraic variety, S an algebraic variety, f: X—S a proper sur-
jective morphism. For D € Div(X)®R, we set

E(X /S, D)={n € N\{0}| £ Ox(InD])#0}.

D is called f-nef if (D-C)=0 for any complete curve C on X such that f(C)
is a point. D is called j-big (resp. j-good) if D|,, is a big (resp. good)
element of Div (X,)®R, where X, is the generic fiber of f. For a Cartier



