$32.$ Relative Zariski Decomposition on Higher Dimensional Algebraic Varieties

By Atsushi MORIWAKI

Department of Mathematics, Faculty of Science, Kyoto University

(Communicated by Kunihiko KODAIRA, M. J. A., March 12, 1986)

0. Introduction. The purpose of this note is to state several results in my Master Thesis [7]. The details will be published elsewhere. The main theorem of this note is Theorem 3. By this theorem, if K_x has a good Zariski decomposition, then the canonical ring of X is finitely generated. Theorem ¹ and Theorem 2 are key theorems to prove Theorem 3. Theorem 5 is a characterization of a nef and good divisor by μ_x . All varieties in this note are assumed to be defined over an algebraically closed field of characteristic zero.

1. Notation. Let X be an algebraic scheme. We denote the group of Cartier divisors on X by Div(X). For a non-zero rational function ϕ on X, the principal Cartier divisor defined by ϕ is denoted by div (ϕ) . For $D_1, D_2 \in Div(X)\otimes \mathbf{R}$, we say D_1 is $\mathbf{R}\text{-}linear\; equivalent\; \text{to}\; D_2$, which is denoted by $D_1 \sim_R D_2$, if there exists a positive integer m and exists a non-zero rational function ϕ on X such that $D_1=D_2+(1/m)\operatorname{div}(\phi)$. For a real number a , the lounding-up, the lounding-down, the nearest integer and the fractional part of a are denoted by $\lceil a \rceil$, $[a]$, $\langle a \rangle$ and $\{a\}$ respectively, where in case $\{a\} = 1/2$, we define $\langle a \rangle = \lceil a \rceil$ if $a > 0$, $\langle a \rangle = [a]$ if $a < 0$. From now on, we assume X is non-singular. Let D be an element of $Div(X) \otimes R$ and $D = \sum_i a_i D_i$ the irreducible decomposition of D. Then we set ΓD $i=\sum_i\lceil a_i\rceil D_i$, $[D]=\sum_i\lceil a_i\rceil D_i$, $\langle D\rangle=\sum_i\langle a_i\rangle D_i$ and $\{D\}=\sum_i\{a_i\}D_i$. Let $\mathcal J$ be an ideal sheaf of \mathcal{O}_X and x a point of X (not necessarily closed). Then we define

 $\operatorname{ord}_x(\mathcal{J})=\max\{a\in N\cup\{\infty\}\mid \mathcal{IO}_{X,x}\subseteq m_x^a\}$ and $\operatorname{ord}_x(D)=\sum_i a_i\operatorname{ord}_x(\mathcal{O}_X(-D_i)),$ where m_x is the maximal ideal of $\mathcal{O}_{x,x}$. We furthermore assume X is complete. We set $\kappa(X, D) = \max_{m} {\kappa(X, [mD])}$. If $\kappa(X, D) = \dim X$, D is called big. D is called good if there exists a birational morphism $\pi: Y \rightarrow X$ of non-
non-singular complete varieties and exists a fiber space $h: Y \rightarrow Z$ of nonnon-singular complete varieties and exists a fiber space $h: Y \rightarrow Z$ of nonsingular complete varieties such that $\pi^*(D) \sim_R h^*(M)$ for some big element M of Div($Z\otimes R$. Next, we consider the relative case. Let X be a nonsingular algebraic variety, S an algebraic variety, $f: X \rightarrow S$ a proper surjective morphism. For $D \in \text{Div}(X) \otimes \mathbb{R}$, we set

 $E(X/S, D) = \{n \in N \setminus \{0\} | f_* \mathcal{O}_X([nD]) \neq 0\}.$

D is called f-nef if $(D\cdot C)\geq 0$ for any complete curve C on X such that $f(C)$ is a point. D is called f-big (resp. f-good) if $D|_{X_n}$ is a big (resp. good) element of $Div(X_n) \otimes \mathbf{R}$, where X_n is the generic fiber of f. For a Cartier