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Let X be a normal algebraic variety over C, and let D be a Weil divisor
on it. We would like to know when the sheaf of graded (2x-algebras
.(D) :-q>=00z(mD) is finitely generated, where the (z(mD) are reflexive
sheaves of rank 1 corresponding to the mD. It is equivalent to saying
that there exists a projective morphism f" X’--X which is an isomorphism
in codimension 1 and such that the strict transform D’ of D on X’ is Q-
Cartier and f-ample. The problem is trivial in case dim X--2; f must be
an isomorphism and the condition for the finite generatedness is simply
that D is Q-Cartier. It is well known that a normal surface singularity X
is (analytically) Q-factorial, i.e., an arbitrary (analytic) Well divisor on X
is Q-Cartier, if and only if X is a rational singularity. In this paper we
announce a partial generalization of this fact to 3-dimensional case. (We
refer the reader to [3] for definitions concerning minimal models.)

Theorem 1. Let X be a 3-dimensional normal algebraic variety over
C which has a most cnonicl singularities, and let D be a Weil divisor on
it. Then (D) is finitely generated.

We note that a rational Gorenstein singularity is canonical. The
theorem is proved in the following way. Let X be as in Theorem 1 and
let g Y--X be a desingularization. Then we can write K,=/*Kx/j ajF
with a0 by definition, where the F are exceptional divisors of/. We
define e(X) as the number of divisors F for which Z is crepant, i.e., a=0
(it is easy to see that e(X) does not depend on the choice of/). For ex-
ample, e(X)-0 if and only if X has at most terminal singularities. We
define also a(X):---dimQZ.(X)o/Div (X)Q, where Z2(X) and Div (X)o are
groups of Q-divisors and Q-Cartier divisors, respectively (one can prove
that a(X) is finite). Thus X is Q-factorial if and only if z(X)--0. Our
theorem is proved by induction on e(X) and a(X) in the category consisting

of varieties X’ with projective birational morphisms f" X’--.X which are
crepant, i.e., Kx,--f*Kx e.g., an isomorphism in codimension 1 is crepant,
since Kx is Q-Cartier. Theorem 1 in case e(X)-0 is proved by using

Brieskorn’s flips as in [5]. The termination of log-flips in case e(X’)=n
produces the existence of the log-flip in case e(X’)----n/l (cf. [3]). In the
course of the proof, the concept of the sectional decomposition, which is a

rather trivial generalization of the Zariski decomposition for surfaces (cf.


