31. On the Crepant Blowing-Ups of Canonical Singularities and Its Application to Degenerations of Surfaces

By Yujiro KAWAMATA Department of Mathematics, Faculty of Science, University of Tokyo

(Communicated by Kunihiko KODAIRA, M. J. A., March 12, 1986)

Let X be a normal algebraic variety over C, and let D be a Weil divisor on it. We would like to know when the sheaf of graded \mathcal{O}_X -algebras $\Re(D) := \bigoplus_{m\geq 0} \mathcal{O}_X(mD)$ is finitely generated, where the $\mathcal{O}_X(mD)$ are reflexive sheaves of rank 1 corresponding to the mD. It is equivalent to saying that there exists a projective morphism $f: X' \to X$ which is an isomorphism in codimension 1 and such that the strict transform D' of D on X' is Q-Cartier and f-ample. The problem is trivial in case dim X=2; f must be an isomorphism and the condition for the finite generatedness is simply that D is Q-Cartier. It is well known that a normal surface singularity X is (analytically) Q-factorial, i.e., an arbitrary (analytic) Weil divisor on X is Q-Cartier, if and only if X is a rational singularity. In this paper we announce a partial generalization of this fact to 3-dimensional case. (We refer the reader to [3] for definitions concerning minimal models.)

Theorem 1. Let X be a 3-dimensional normal algebraic variety over C which has at most canonical singularities, and let D be a Weil divisor on it. Then $\mathcal{R}(D)$ is finitely generated.

We note that a rational Gorenstein singularity is canonical. The theorem is proved in the following way. Let X be as in Theorem 1 and let $\mu: Y \to X$ be a desingularization. Then we can write $K_Y = \mu^* K_X + \sum_j a_j F_j$ with $a_i \geq 0$ by definition, where the F_i are exceptional divisors of μ . We define e(X) as the number of divisors F_i for which μ is crepant, i.e., $a_i = 0$ (it is easy to see that e(X) does not depend on the choice of μ). For example, e(X) = 0 if and only if X has at most terminal singularities. We define also $\sigma(X) := \dim_{Q} Z_{2}(X)_{Q} / \operatorname{Div}(X)_{Q}$, where $Z_{2}(X)_{Q}$ and $\operatorname{Div}(X)_{Q}$ are groups of Q-divisors and Q-Cartier divisors, respectively (one can prove that $\sigma(X)$ is finite). Thus X is **Q**-factorial if and only if $\sigma(X) = 0$. Our theorem is proved by induction on e(X) and $\sigma(X)$ in the category consisting of varieties X' with projective birational morphisms $f: X' \rightarrow X$ which are crepant, i.e., $K_{X'} = f^*K_X$; e.g., an isomorphism in codimension 1 is crepant, since K_x is Q-Cartier. Theorem 1 in case e(X)=0 is proved by using Brieskorn's flips as in [5]. The termination of log-flips in case e(X') = nproduces the existence of the log-flip in case e(X') = n+1 (cf. [3]). In the course of the proof, the concept of the sectional decomposition, which is a rather trivial generalization of the Zariski decomposition for surfaces (cf.