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§1. Main results. Throughout this note (X, T) is a topological
dynamical system, i.e., a pair of a compact Hausdorff space X and a con-
tinuous map T of X to itself. Let C(X) be the Banach space of all con-
tinuous complex functions on X with the usual supremum norm. By
E(X, T) [resp. o(X, T)] we denote the set of all eigenfunctions [resp. eigen-
values] of U, defined by U, (f)=sf-T(feCX)). We say that (X, T) has
discrete spectrum if the norm closed linear span of E(X,T) is identical
with C(X). For any fixed ze X we put O,(x)={T"x; ne N} and OF(x)
={T"x; ne Z*}, where N[Z*] is the set of all nonnegative [positive] in-
tegers. (X, T) is said to be topologically transitive if there exists some
p € X for which O,(p) is dense in X. We distinguish the topological tran-
sitivity for (X, T) into the following two cases:

(A) There exists some p € X for which O} (p) is dense in X.

(B) There exists some p € X for which O,(p) is dense in X, and O3 (x)

is not dense in X for all z ¢ X.

The purpose of this paper is to clarify the structure of topologically transi-
tive (X, T) with discrete spectrum. We say that (X, T) is topologically
conjugate to a topological dynamical system (Y, S), in symbol (X, T)=(Y, S),
if there exists a homeomorphism ¢ of X onto Y such that go T'=So¢. Let
X, T)=(,S). Then X, T)=0(,S), (X, T) has discrete spectrum if and
only if so has (¥, S), and further (X, T) satisfies (A) [(B)] if and only if
(Y, S) satisfies (A) [(B)].

Let G be a compact abelian semigroup, ¢ € G and L, the translation
on G defined by a. Then we get a topological dynamical system (G, L,).
Let G,=G U {e} be the adjunction of an identity e to G. This is also a com-
pact abelian semigroup in which e is an isolated point. A semicharacter
of G is a continuous function X on G such that X(¢)0 for some g€ G and
X(st)=2x(s)x(t) for all s, ¢t in G. By G we denote the set of all semicharac-
ters of G. G is said to be separative if for any distinct s, ¢ € G there exists
% e G with X(s)=£X(t). As seen easily G, is separative if and only if so is G.
Further if G is separative, then the norm closed linear span of G is iden-
tical with C(G). If there exists some a € G such that {¢"; ne Z*} is dense
in G, then G is called a monotetic semigroup with the generator a. Under
the above notations and terminology our main results are stated as follows.

Theorem 1. (X, T) has discrete spectrum and satisfies the condition



