On Branched Coverings of Projective Manifolds

By Makoto Namba

Department of Mathematics, Faculty of Science, Tohoku University

(Communicated by Kunihiko Kodaira, M. J. A., April 12, 1985)

Introduction. Let M be an n-dimensional complex projective mani-A finite branched covering of M is, by definition, a proper finite holomorphic mapping $\pi: X \rightarrow M$ of an irreducible normal complex space X The ramification locus $R_{\pi} = \{x \in X \mid \pi^* : \mathcal{O}_{M,\pi(x)} \to \mathcal{O}_{X,x} \text{ is not iso-}$ morphic of π and the branch locus $B_{\pi} = \pi(R_{\pi})$ of π are hypersurfaces of X and M, respectively. For a point $x \in \pi^{-1}(B_{\pi})$, if $y = \pi(x)$ is a non-singular point of B_x , then x is a non-singular point of both X and $\pi^{-1}(B_x)$. In this case, there are coordinate systems (z_1, \dots, z_n) and (w_1, \dots, w_n) around xand y, respectively, such that π is locally given by

$$\pi:(z_1,\cdots,z_n)\longmapsto(w_1,\cdots,w_n)=(z_1,\cdots,z_{n-1},z_n^e).$$

The positive integer e is then locally constant with respect to x. Hence, to every irreducible component D' of $\pi^{-1}(B_{\pi})$, a positive integer $e=e_{D'}$ is associated and is called the ramification index of π at D'. A covering transformation of π is an automorphism φ of X such that $\pi\varphi = \pi$. We denote by G_{π} the group of all covering transformations. π is said to be *Galois* if G_{π} acts transitively on every fiber of π . π is said to be *abelian* if π is Galois and G_{π} is an abelian group.

Let D_1, \dots, D_s be irreducible hypersurfaces of M. Put $B = D_1 \cup \dots \cup D_s$ D_s . Let e_1, \dots, e_s be positive integers greater than 1. Consider the positive divisor $D = e_1 D_1 + \cdots + e_s D_s$. A finite branched covering $\pi: X \to M$ is said to branch at D (resp. at at most D) if $B_{\pi} = B$ (resp. $B_{\pi} \subset B$) and, for every j ($1 \le j \le s$), and for any irreducible component D' of $\pi^{-1}(D_j)$, the ramification index of π at D' is e_i (resp. divides e_i).

The purpose of this note is (1) to give a criterion for the existence of a finite Galois (resp. abelian) covering of M which branches at D and (2) to describe the set of all (isomorphism classes of) finite Galois (resp. abelian) coverings of M which branch at at most D. We follow the idea of Weil [4].

The detail will be given in Namba [2].

1. Abelian coverings. Let M and D be as above. Consider the additive group

$$Div(M, D) = \{\hat{E} = (a_1/e_1)D_1 + \dots + (a_s/e_s)D_s + E' \mid a_f \in Z\}$$

for $1 \le j \le s$, E' is an (integral) divisor

of rational divisors on M. $E_1, E_2 \in \text{Div}(M, D)$ are said to be linearly equivalent, $E_1 \sim E_2$, if $E_1 - E_2$ is a principal integral divisor on M.