29. A Generalization of Gauss' Theorem on the Genera of Quadratic Forms*)

By Takashi Ono

Department of Mathematics, The Johns Hopkins University and Rikkyo University

(Communicated by Shokichi IYANAGA, M. J. A., April 12, 1985)

Let T be a torus defined over Q. As is well known, one can associate with T the class number h_T independently of matrix representation of T. (See [2] p. 119 footnote and p. 120 line 17. As for basic facts on tori, see [2], [3].) When $T = R_{K/Q}(G_m)$, the multiplicative group K^{\times} of an algebraic number field K viewed as an algebraic group over Q, h_T coincides with the ordinary class number h_K of the field K. Consider a short exact sequence of tori over Q:

$$0 \longrightarrow T' \longrightarrow T \longrightarrow T'' \longrightarrow 0$$
.

It is natural to think of the alternating product

$$\frac{h_T}{h_{T'}h_{T''}}.$$

In his thesis Shyr considered this problem, obtained a general formula using [2], [3] and noticed, among others, that the formula is nothing but the formula of Gauss

(G)
$$h_{\kappa}^{+} = h_{\kappa}^{*} 2^{t-1}$$

when applied to $T = R_{K/Q}(G_m)$, $T'' = G_m$ and T' = the kernel of the norm map $N: T \to T''$, where K/Q = a quadratic extension, $h_K^+ =$ the class number of K in the narrow sense, $h_K^+ =$ the number of classes in a genus and t = the number of rational primes ramified in K/Q. (See [4] and [5].)

In this note, we shall report formulas of the same type as (G) for any cyclic Kummer extension K/k and clarify the relationship between ingredients of our formula and those appearing in the classical treatment of class field theory.

So, let k be an algebraic number field of degree n_0 over Q which contains a primitive n-th root of 1 ($n \ge 2$) and K/k be a cyclic extension of degree n. Consider tori $T_0 = R_{K/k}(G_m)$, $T_0'' = G_m$ over k and the exact sequence over k:

$$0 \longrightarrow T'_0 \longrightarrow T_0 \longrightarrow T''_0 \longrightarrow 0$$

where T_0' is the kernel of the norm map $N: T_0 \to T_0''$. Applying $R_{k/Q}$, we obtain the exact sequence over Q:

$$0 \longrightarrow T' \longrightarrow T \longrightarrow T'' \longrightarrow 0$$

where $T = R_{k/Q}(T_0) = R_{K/Q}(G_m)$, $T'' = R_{k/Q}(G_m)$ and $T' = R_{k/Q}(T'_0)$. We have $h_T = h_K$, $h_{T''} = h_k$. As for the Tamagawa numbers, we have $\tau(T) = \tau(T'') = 1$ and $\tau(T') = \tau_k(T'_0) = n$ since K/k is cyclic of degree n. (See [3] Corollary to

^{*)} Dedicated to John Tate for his 60th birthday.