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Abstract. It is shown that in suitable circumstances the charac-
terization of transmutation kernels via minimization can be achieved
via stochastic information and accomplishes the same thing in sto-
chastic geometry as linear least squares estimation.

1. Introduction. We will show here how the two areas of trans-
mutation and linear filtering theory are directly connected by a
minimization principle. Thus we refer first to transmutation theory
as developed in [1], [2] for example where the basic theme is to study
operators B: P—Q intertwining P and Q (BP=@QB acting on suitable
functions) ; P and @ are two second order ordinary differential oper-
ators and B is generally an integral operator with a distribution kernel.
Such transmutations B are often characterized by their action on
suitable eigenfunctions ¢ of P (Ppl = —2¢F) and ¢f = Bo} satisfies ()
Qpi=—2%% ; they play an important role in the study of special func-
tions, eigenfunction integral transforms, inverse problems, etc. In
particular in classical quantum scattering theory with P=D? and @
=D*—q(x) extensive use of transmutation methods appears in the
physics literature (cf. [8]). We take this as our basic situation here
also, in establishing links with estimation theory, and take ¢f(x)
=Cos 2z with ¢?(x) defined to satisfy (x) with ¢§(0)=1 and D_¢3(0)=nh
#0. Then

o?W) = (Bo?)(y) =Cos zy+j: K(y, ) Cos adz

and K(y, x) is a function with smoothness depending on ¢q. Strictly
speaking one should index with h, i.e. B,, K,, etc. but we omit the
index & for simplicity. Also assume the spectral theory for @ (=Q,)
is based on a measure dw(1)=wdi (no bound states). Now recently in
[3]-16] it was shown that various transmutations can be characterized
by minimization with Gelfand-Levitan (G-L) or Marcéenko (M) equa-
tions arising as Euler equations (cf. also [10]). In the same spirit
K (=K,) above will arise from minimizing

(1.1) E=j: f {go?(y)—Cos zy-j:@(y, 2) Cos lxdx}zdwdy

(T <o fixed) over a suitable class of kernels & having the same prop-
erties as K above. For questions of linear estimation, prediction,



