19. Representations over G-Rings and Cohomology^{*)}

By Katsuo KAWAKUBO Osaka University

(Communicated by Kunihiko KODAIRA, M. J. A., Feb. 13, 1984)

§1. Introduction. Let G be a group. The word ring will always mean associative ring with an identity element 1. A G-ring is a ring Λ together with a G-action on Λ preserving the ring structure. Then we introduce a Grothendieck group $R(G, \Lambda)$ associated with the abelian semi-group consisting of representations over Λ . The group $R(G, \Lambda)$ is a generalization of the representation rings R(G) and RO(G).

The purpose of the present paper is to express $R(G, \Lambda)$ in terms of the cohomology $H^{1}(G; GL(n, \Lambda))$ of the group G with coefficients in a non-abelian group $GL(n, \Lambda)$ in the sense of Serre [3].

In some cases, $R(G, \Lambda)$ is isomorphic to an equivariant algebraic *K*-group $K^{o}(\Lambda; F_{f})_{d}$ and we can express $K^{o}(\Lambda; F_{f})_{d}$ in terms of the cohomology $H^{1}(G; GL(n, \Lambda))$. An interesting example is provided by Serre [3]. In fact the example was a starting point of the present investigation.

The consideration of the present paper will be used to prove an induction theorem for equivariant K-theory in a subsequent paper [2].

§ 2. $R(G, \Lambda)$. Let Λ be a G-ring. A Λ G-module is a module M over Λ together with a G-action on M such that

 $(*) \qquad \qquad g(\lambda_1 m_1 + \lambda_2 m_2) = (g\lambda_1)(gm_1) + (g\lambda_2)(gm_2)$

for any $g \in G$, $\lambda_i \in \Lambda$, $m_i \in M$. In this paper any modules are assumed to be finitely generated.

Then $R(G, \Lambda)$ is defined to be the abelian group given by generators [M] where M is a ΛG -module which is free over Λ , with relations

$$[M] = [M'] + [M'']$$

whenever $M \cong M' \oplus M''$.

When Λ is a commutative *G*-ring, we can consider a product $M_1 \otimes M_2$ of two ΛG -modules M_1, M_2 (see [1]). If M_1, M_2 are free over $\Lambda, M_1 \otimes M_2$ is also free over Λ . Hence this product induces a structure of commutative ring in $R(G, \Lambda)$.

Remark 2.1. If Λ is R (the field of the real numbers) or C (the field of the complex numbers) with trivial G-action, then $R(G, \Lambda)$ is nothing but the real representation ring RO(G) or the complex representation ring R(G) respectively.

^{*)} Dedicated to Prof. Minoru Nakaoka on his sixtieth birthday. Research supported in part by Grant-in-Aid for Scientific Research.