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4.Dimensional Brownian Motion is Recurrent
with Positive Capacity
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(Communicated by KSsaku Y0SIDA, M.J.A., Feb. 13, 1984)

1. In his pioneering work [1], Fukushima has proved that many
sample path properties of the Brownian motion hold except not only
on a set of the Wiener measure zero but also on a polar set with respect
to the Ornstein-Uhlenbeck process on the. Wiener space. Among many
results, he proved that for d-dimensional Brownian motion if d5,
then the. sample paths are transient quasi everywhere, that is, except
on a polar set or equivalently except on a set of capacity zero. After
him, the author proved as a special case that if d___3, the sample paths
are recurrent with positive capacity or equivalently the Ornstein-
Uhlenbeck process on the Wiener space hit the set of recurrent
Brownian paths with positive probability (actually probability 1) [3].
In this paper, we prove that 4-dimensional Brownian paths are also
recurrent with positive capacity by taking account of the result of
Orey-Pruitt about the N-parameter Wiener process [4].

2. Let W(,=(W?), ..., W)) be the 2-parameter Wiener process
with values in d-dimensional Euclidean space R whose components
are, independent, that is, each W), i= 1, ..., d is an independent copy
of a two parameter Gaussian process {W(t, s, w); 0_ t, s( + oo} defined
on a probability space (2, , P) having continuous sample, paths with
the. mean zero and the covariance

E[W(t, s)W(t, s.)] (t/k t)(s /k s,),
where, a/k b min (a, b).

Taking t0 as a parameter set, W(,)(t,., (o)--B(t, (o) is considered
as a Brownian motion in the, sense of Gross [2] with the values in the
d-dimensional Wiener space which is a separable Banach space X with
a suitable norm. We define the. Ornstein-Uhlenbeck process U(t,
as a time. change of the Brownian motion by
( 1 ) U(t, (o)= e-/B(e,
Since X is a subspace of the. R-valued continuous functions defined
on [0, oo), we denote by f(x) for an element x of X the value in R at
s_0.

3. Set
A(u, )= {x e X Sn + oO such that f,(x)--u[[),

where 0 and u e R, means the usual Euclidean norm in R.


