108. On Semi-Free Unitary S1-Manifolds

By Masayoshi KAMATA

Department of Mathematics, College of Education,

Kyushu University

(Communicated by Shokichi IYANAGA, M. J. A., Dec. 12, 1984)

1. Introduction. In [5] C. Kosniowski studied unitary manifolds with an almost effective unitary S^1 -action for which the fixed point set is a homology sphere. In this paper we are concerned with unitary S^1 -manifolds for which each isotropy group is $\{1\}$ or S^1 . These S^1 -manifolds are called semi-free unitary S^1 -manifolds. Let Σ^n be a smooth manifold of the integral homology type of the standard n-sphere S^n . Given an integer k, a homology sphere Σ^{2n} can be equipped with a stable complex structure such that $\tau'(\Sigma^{2n}) - \dim_c \tau' = 2k\sigma$ if $n \equiv 1 \mod 4$, and $\tau'(\Sigma^{2n}) - \dim_c \tau' = k\sigma$ if $n \equiv 3 \mod 4$, in the complex K-group $\widetilde{K}(\Sigma^{2n}) \cong Z(\sigma)$, where τ' is the Whitney sum of the tangent bundle $\tau(\Sigma^{2n})$ and a suitable trivial bundle. The stable complex structures of other spheres are trivial. Let $\Sigma^{2n}(k)$ be the 2n-sphere with $\tau'(\Sigma^{2n}) - \dim_c \tau' = k\sigma$, n > 0. We then have

Theorem 1. There exists a semi-free unitary S^1 -manifold (M, ϕ) with the fixed point set $\Sigma^{2m}(k_1) + \Sigma^{2m}(k_2) + \cdots + \Sigma^{2m}(k_u)$ such that the normal bundle ν_i of $\Sigma^{2m}(k_i)$ has the m-th Chern class $c^m(\nu_i) = \lambda_i [\Sigma^{2m}(k_i)]$, where [M] indicates the fundamental class of M, if and only if $\sum_{i=1}^u \lambda_i = 0$ and $\sum_{i=1}^u k_i = 0$.

The next corollary results from Theorem 1 and the fact that the class [M] of a semi-free S^1 -manifold (M, ϕ) in the unitary cobordism group is given by $[M] = \sum_{i=1}^{s} [P(\nu_i \oplus 1)]$, where the summation is extended over the components $\{F_i\}$ of the fixed point set and $P(\nu_i \oplus 1)$ indicates the projective bundle of $\nu_i \oplus 1$, ν_i the normal bundle of F_i .

Corollary 2. Let (M, ϕ) be a semi-free unitary S^1 -manifold. If the fixed point set is a homology sphere, then M is a boundary.

The bordism group $F_{w}^{y}(S^{1})$ of free unitary S^{1} -manifolds is the free U_{*} -module with the base $\{[S^{2n+1},\phi_{n}]; n=0,1,2,\cdots,\phi_{n}: S^{1}\times S^{2n+1}\rightarrow S^{2n+1}$ is an S^{1} -action given by $\phi_{n}(z,v)=zv\}$. By combining the discussion of Theorem 1 with the formal group law theory, we obtain

Theorem 3. If $\xi \to \Sigma^2$ is an n-dimensional complex vector bundle with $\tau'(\Sigma^2) - \dim_c \tau' = 2k\sigma$ in $\tilde{K}(\Sigma^2) \cong Z(\sigma)$, and $c^1(\xi) = \lambda[\Sigma^2]$, then the bordism class $[S(\xi), \phi_{\xi}]$ of an S¹-action given by $\phi_{\xi}: S^1 \times S(\xi) \to S(\xi)$, $\phi_{\xi}(z, v) = zv$ is described as follows:

$$[S(\xi), \phi_{\xi}] = -\lambda[S^{2n+1}, \phi_n] + (k+\lambda)[CP^1][S^{2n-1}, \phi_{n-1}]$$