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1. Meromorphy of Euler products. Let E--(P, G, c0 be an
Euler datum in the sense of Part I. We describe a sufficient condition
making E and E--(P, G R, ) complete when/(P)< d(P) ( oo). We
follow the notations of Part I (see [1]).

We say that E satisfies the condition L if E satisfies the following
(I)-(III)

( I ) L(s, E, ) is meromorphic on C for each p e Irr (G).
(II) L(s, E, )is non-zero holomorphic in Re (s)d(P) for each

p e Irr (G), except for a simple pole at s--d(P) when is trivial.
(III) For each e Irr (G) and T>0, let S(T, E, ) be the number

of distinct zeros and poles of L(s, E, ) in the region (s e C; 0<Re (s)
<=d(P) and T<Im (s)< T}. Then there exist a positive constant c
and a real valued "admissible" function C on Irr (G) such that the
following holds"

S(T, E, )<C(p)(T+ 1) for all e Irr (G) and T>0.
The admissibility of C is defined as follows. We denote by

Rep (G)the set of all equivalence classes of finite dimensional con-
tinuous unitary representations of G, which is considered to be a free
abelian semigroup (with respect to the direct sum q3) generated by
Irr (G), hence C is naturally considered as a function on Rep (G) by
the additive extension. We put Co(p)=C(p)/deg (p). We say that C
is admissible if there exists a constant a0 such that Co satisfies the
following (1)-(3)"

(1) Co(pl(R)p)<__Co(pl)+Co(p2)+a for all pl and p2 in Rep (G);
(2) C0(/ (p))<_Co(p)j.deg(p)+a for all p in Rep(G) and ]0,

where / (p) denotes the ]-th exterior power of p;
(3) Co(S(p))<=Co(p)m.deg(p)+a for all p in Rep(G) and m0,

where S(p) denotes the m-th symmetric power of p.
(For example, deg is an admissible function with any a_>_l.)

Then we have the following
Theorem 1. Let E=(P, G, ) be an Euler datum with l(P)< d(P).

Assume that E satisfies the condition L. Then E and E are complete.

2. Note on the proof. Let G be a topological group. Let H(T)
be a polynomial of degree r belonging to 1+ T.Ru(G)[T]. Then, there
are continuous functions ’" Conj (G)C such that


