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1. Introduction. Let X, X, be i.i.d. (independent, identi-
cally distributed) random variables and put S- X+... +X, and
Mn max (X, ., Xn) n 1, 2, Chow-Teugels [2] studied the
joint limiting distributions of (S,,, Mn) as n--oo after suitable nor-
malizations. In this note we. will consider this problem using the
theory of point processes and generalize the result of [2] to a functional
limit theorem for the sums and the maxima of triangular arrays of
i.i.d, random variables.

2. Main theorem. Let {}= be i.i.d, random variables with
distribution function F,,(x), n-l, 2, Throughout this paper we
assume that for suitably chosen constants A, n--l, 2, and a non-
degenerate distribution function F(x) we have
(2.1) lim_ P[]__ n--A,,<=x]=F(x) at all continuity points of F(x).

The characteristic function (t) of dF(x) has the following repre-
sentation.

(2.2) (t)--exp
2

where y e R, a>=0, .f min (1, x)l(dx) and0 is chosen so

that/(_+ 3}=0.
It is well known that (2.1) implies a functional limit theorem the

process
(2.3) (t) j_ntnj A[nt] /n
converges in law to the L4vy process (t) with characteristic (2.2) over
the Skorohod function space D([0, c) R) endowed with the J-topology
(see [5] for the definition). We also assume that there exist constants
B0, C, n=l, 2,... and nondegenerate distribution function G(x)
such that
(2.4) lim P[B, max -C=x]=G(x) at all continuity points of G(x)

k<n

(see Lemma 4.1.).
(As we will see later, if/(0, c)0 then this condition is automatic

from (2.1) with B--I, Cn--0.) It is also well known that (2.4) implies
a functional limit theorem" Define


