77. The Fabry-Ehrenpreis Gap Theorem for Hyperfunctions

By Takahiro KAWAI

Research Institute for Mathematical Sciences, Kyoto University

(Communicated by Heisuke HIRONAKA, M. J. A., Sept. 12, 1984)

In [7], we have shown that the Fabry-type gap theorems can be most neatly handled by the aid of linear differential equations of infinite order, thus realizing an ideal of Ehrenpreis [3]. Although the classical gap theorems refer to holomorphic functions, it is evident that they are closely related to the analysis of Fourier series on a real domain. The relation is most obvious in the one-dimensional case:

Let $f_+(z)$ (resp., $f_-(z)$) denote $\sum_{n\geq 0} c_n \exp(ia_n z)$ (resp., $\sum_{n<0} c_n c_n \cdot \exp(ia_n z)$) $(c_n \in \mathbf{C}, a_n \in \mathbf{R} \text{ and } i = \sqrt{-1})$ and suppose that $f_+(z)$ (resp., $f_-(z)$) determines a holomorphic function on $\{z \in \mathbf{C}; \operatorname{Im} z > 0\}$ (resp., $\{z \in \mathbf{C}; \operatorname{Im} z < 0\}$). Suppose further that the sequence a_n is sufficiently lacunary so that Theorem 1 of [7] is applicable to them. Let f(x) denote the hyperfunction determined by the pair of holomorphic functions $f_+(z)$ and $f_-(z)$, and suppose that f(x) vanishes near x=0. This means, by the definition, that there exists a holomorphic function F(z) defined on $\{z \in \mathbf{C}; \text{ either Im } z \neq 0 \text{ or } |\operatorname{Re} z| < c \ (c > 0)\}$ which coincides with $f_{\pm}(z)$ on $\{z \in \mathbf{C}; \pm \operatorname{Im} z > 0\}$, respectively. Then the gap theorem for holomorphic functions entails that both $f_+(z)$ and $f_-(z)$ are holomorphic in a neighborhood of the real axis \mathbf{R} , and hence their difference f(x) is analytic on \mathbf{R} . Since f(x) vanishes near x=0, this implies that f(x) is identically zero.

In the higher dimensional case, however, such a straightforward connection cannot be observed immediately because of the complexity of the notion of the vanishing of a hyperfunction; it requires a cohomological language. (See [4], Chap. 1, §2, for example.) Still, this trouble due to the higher dimensionality of the problem is only a technical matter, as is usually the case in dealing with hyperfunctions; we can obtain the same result also for the higher dimensional case. This is what we want to report here.

In what follows, for a sequence a(l) $(l \in N = \{0, 1, 2, \dots\})$ of *m*dimensional real vectors, we let $a_j(n)$ $(j=1, \dots, m; n \in N)$ denote its *j*-th reduced sequence in the sense of [7], Definition 1. We also denote $\sum_{j=1}^{m} |a(l)_j|$ by |a(l)|, where $a(l)_j$ denotes the *j*-th component of a(l).

Theorem. Let a(l) $(l \in N)$ be a sequence of m-dimensional real vectors such that its j-th reduced sequence $a_i(n)$ satisfies the following