On the Euler.Poisson.Darboux Equation and the 40. Toda Equation. ^I

By Yoshinori KAMETAKA

Department of Applied Mathematics, Faculty of Engineering, Ehime University

(Communicated by Kôsaku YosiDA, M.J.A., May 12, 1984)

§1. Summary. The Toda equation with two time variables

$$
(1.1) \quad XY \log t_n = t_{n+1} t_{n-1} / t_n^2 \qquad \left(X = \frac{\partial}{\partial x}, \ Y = \frac{\partial}{\partial y}, \ t_n = t_n(x, y) \right)
$$

can be solved using solutions of the Euler-Poisson-Darboux equations ([1])

(1.2) $(XY+(\alpha+\beta-1-2n)\varphi^{-1}X-(n-\alpha)(n-\beta)\varphi^{-2})u_n=0,$

where $\varphi=x-y$. Rational solutions, Gauss hypergeometric function solutions and solutions which can be expressed by hypergeometric functions with two variables (Appell hypergeometric functions F_1, F_2 and F_s are included) are obtained. K. Okamoto ([2]) also found these hypergeometric solutions.

\n- \n S2. Backlund transformation. When
$$
t_n
$$
 satisfies (1.1)\n $r_n = XY \log t_n$, $s_n = Y \log t_{n-1}/t_n$ \n satisfies\n $Yr_n = r_n(s_n - s_{n+1})$, $Xs_n = r_{n-1} - r_n$.\n Eliminating s_n we have\n (2.3) \n $XY \log r_n = r_{n+1} - 2r_n + r_{n-1}$.\n This form of the Toda equation was found by G. Darboux ([1]). As\n was shown in our previous work ([3])\n $t_n = F(n)\varphi^{-f(n)}$,\n where $f(n) = (n - \alpha)(n - \beta)$, α and β are arbitrary constants,\n $F(n+1)F(n-1)/F(n)^2 = -f(n)$, $F(0) = F(1) = 1$,\n satisfies the Toda equation (1.1). Corresponding\n (2.5) \n $r_n = -f(n)\varphi^{-2}$, $s_n = (\alpha + \beta + 1 - 2n)\varphi^{-1}$ \n satisfies the Toda equation (2.2). This simple important solution r_n was first found by G. Darboux ([1]). For these special solutions we put\n (2.6) \n $M_n = XY + (\alpha + \beta - 1 - 2n)\varphi^{-1}X - (n - \alpha)(n - \beta)\varphi^{-2}$,\n $X_n = ((n - \alpha)(n - \beta))^{-1}\varphi^2 X$, $Y_n = Y + (\alpha + \beta - 1 - 2n)\varphi^{-1}$.\n
\n

Define

(2.7) $T=[u_n; M_0u_0=0, u_{n+1}=Y_nu_n \ (n\geq 0), u_{n-1}=X_nu_n \ (n\leq 0)].$

Theorem 2.1 (Bäcklund transformation). If $u_n \in T$ then we have $M_nu_n=0$, $u_{n+1}=Y_nu_n$, $u_{n-1}=X_nu_n$ $(n=0,\pm 1,\pm 2,\cdots)$ and $\tau_n=u_nt_n$