39. Structure of the Solution Space of Witten's Gauge-field Equations

By Norio Suzuki
Department of Mathematics, Tokyo Institute of Technology
(Communicated by Kôsaku Yosida, m. J. A., May 12, 1984)

§0. Introduction. Consider a gauge field in the eight-dimensional space satisfying

$$
\begin{align*}
& {\left[\nabla_{y_{\mu}}, \nabla_{y_{\nu}}\right]=(1 / 2) \varepsilon_{\mu \nu \alpha}\left[\nabla_{y_{\alpha}}, \nabla_{y_{\beta}}\right],} \tag{1}\\
& {\left[\nabla_{z_{\mu}}, \nabla_{z_{z}}\right]=(-1 / 2) \varepsilon_{\mu \nu \alpha \beta}\left[\nabla_{z_{2}}, \nabla_{z_{\beta} \beta},\right.} \\
& {\left[\nabla_{y_{\mu}}, \nabla_{z_{\nu}}\right]=0, \quad(\mu, \nu=0,1,2,3)}
\end{align*}
$$

where $(y, z)=\left(y_{0}, y_{1}, y_{2}, y_{3}, z_{0}, z_{1}, z_{2}, z_{3}\right) \in C^{8}, \Delta_{y_{\mu}}$ etc. are covariant derivatives, and $\varepsilon_{\mu \nu \alpha \beta}$ is the totally anti-symmetric tensor such that $\varepsilon_{0,1,2,3}=1$.

Set $x=(y+z) / 2, w=(y-z) / 2$. E. Witten [1] pointed out that (1) implies the second-order Yang-Mills equations

$$
\begin{equation*}
\left[\nabla_{x_{\mu}},\left[\nabla_{x_{\mu}}, \nabla_{x_{\nu}}\right]\right]=0 \quad(\nu=0,1,2,3) \tag{2}
\end{equation*}
$$

on the diagonal subspace $\Delta=\{(y, z) \mid w=0\}$, and further, that a gauge field on Δ satisfies (2) if and only if it can be extended to a neighborhood of Δ consistently to (1) $\bmod \left(w_{0}, w_{1}, w_{2}, w_{3}\right)^{2}$. Here $\left(w_{0}, w_{1}, w_{2}, w_{3}\right)^{2}$ denotes the square of the ideal generated by $w_{0}, w_{1}, w_{2}, w_{3}$.

In this paper, we rewrite (1) in the language of Sato's soliton theory [2] and investigate the structure of the solution space of (1) on the analogy of Takasaki's work ([3], [4]): we solve an initial-value problem of differential equations with respect to functions with value in an infinite-dimensional Grassmann manifold. (See Theorem 2.)

In our case, there appear a pair of spectral parameters λ_{1}, λ_{2}. The main difference from the case of one spectral parameter is that the initial data must satisfy a system of differential equations if the problem is solvable. (See Proposition 4 and cf. [3].)
§ 1. Linearization. Set $\eta_{1}=y_{0}+i y_{1}, \zeta_{1}=y_{2}-i y_{3}, \eta_{2}=z_{0}+i z_{1}, \zeta_{2}=z_{2}$ $-i z_{3}, \bar{\eta}_{1}=y_{0}-i y_{1}, \bar{\zeta}_{1}=y_{2}+i y_{3}, \bar{\eta}_{2}=z_{0}-i z_{1}$, and $\bar{\zeta}_{2}=z_{2}+i z_{3}$. Then, introducing parameters λ_{1}, λ_{2}, we can rewrite (1) as follows: for any $\lambda_{1}, \lambda_{2} \in C$,

$$
\begin{align*}
& {\left[-\lambda_{1} \nabla_{\eta_{1}}+\nabla_{\xi_{1}}, \lambda_{1} \nabla_{\xi_{1}}+\nabla_{\bar{\eta}_{1}}\right]=0, \quad\left[-\lambda_{2} \nabla_{\eta_{2}}+\nabla_{\xi_{2}}, \lambda_{2} \nabla_{\bar{\xi}_{2}}+\nabla_{\bar{\eta}_{2}}\right]=0,} \tag{3}\\
& {\left[-\lambda_{1} \nabla_{\eta_{1}}+\nabla_{\xi_{1}},-\lambda_{2} \nabla_{\eta_{2}}+\nabla_{\xi_{2}}\right]=\left[-\lambda_{1} \nabla_{\eta_{1}}+\nabla_{\xi_{1}}, \lambda_{2} \nabla_{\xi_{2}}+\nabla_{\bar{\eta}_{2}}\right]=0 \text {, }} \\
& {\left[\lambda_{1} \nabla_{\xi_{1}}+\nabla_{\bar{\eta}_{1}},-\lambda_{2} \nabla_{\eta_{2}}+\nabla_{\xi_{2}}\right]=\left[\lambda_{1} \nabla_{\xi_{1}}+\nabla_{\bar{\eta}_{1}}, \lambda_{2} \nabla_{\bar{\xi}_{2}}+\nabla_{\bar{\eta}_{2}}\right]=0 \text {. }}
\end{align*}
$$

Throughout this paper we discuss in the category of formal power series, so that $\nabla_{\eta_{1}}=\partial_{\eta_{1}}+A_{\eta_{1}}, A_{\eta_{1}} \in \mathrm{gl}\left(n, C\left[\left[\eta_{1}, \zeta_{1}, \cdots, \bar{\zeta}_{2}\right]\right]\right)$ etc.

Now we "fix" the gauge, namely, restrict the freedom of gauge so that $A_{\eta_{1}}=A_{\xi_{1}}=A_{\eta_{2}}=A_{\xi_{2}}=0$. Then (3) reads

