35. Galois Groups of Polynomials

By Mitsuo Yoshizawa

College of General Education, Keio University

(Communicated by Shokichi IYANAGA, M. J. A., April 12, 1984)

1. Let $f(x) \in K[x]$ be a monic irreducible polynomial of degree n over a field K of characteristic 0. Several theoretical algorithms for the determination of the Galois group $\operatorname{Gal}_{K}(f)$ of f(x) over K have been developed by many authors (cf. van der Waerden [5], Zassenhaus [7], Stauduhar [4]), but it is known that the practical determination is difficult for large n. In [1] a technique for determining the settransitivity of the Galois group of a polynomial is described by Erbach, Fischer and Mckay, and they prove that $x^7 - 154x + 99$ has the Galois group PSL(2, 7). In [3] Jensen and Yui give a criterion characterizing f(x) with $\operatorname{Gal}_{K}(f) \cong D_{p}$ (the dihedral group of prime degree p).

In this paper we give criteria characterizing f(x) which has as $\operatorname{Gal}_{\kappa}(f)$ a group with some properties as a permutation group. In particular, we give a formula giving the order of $\operatorname{Gal}_{\kappa}(f)$.

2. We state several terminologies [6] concerning the permutation group theory. Let G be a permutation group on Ω . We say that a subset Δ of Ω is an orbit of G if $(\Delta)G = \Delta$ and G acts transitively on Δ . G is called t-transitive on Ω if for every two ordered t-tuples $\alpha_1, \dots, \alpha_t$ and β_1, \dots, β_t of elements of Ω (with $\alpha_i \neq \alpha_j, \beta_i \neq \beta_j$ for $i \neq j$) there exists $g \in G$ with $(\alpha_i)g = \beta_i$ $(i=1,\dots,t)$. If G is transitive on Ω and if there is a subset Γ $(1 < |\Gamma| < |\Omega|)$ of Ω satisfying $(\Gamma)g = \Gamma$ or $(\Gamma)g \cap \Gamma = \phi$ for all $g \in G$, G is called an *imprimitive group* on Ω with a block Γ . (Then $|\Gamma|||\Omega|$ holds obviously.) We say G is primitive on Ω if G is transitive but not imprimitive on Ω . Obviously G is primitive if G is doubly transitive. For s elements $\alpha_1, \dots, \alpha_s \in \Omega$ we set $G_{\alpha_1\dots\alpha_s} = \{g \in G : (\alpha_i)g = \alpha_i, i = 1, \dots, s\}$, a subgroup of G.

3. From now on, we assume $G = \operatorname{Gal}_{\kappa}(f)$ and $\Omega =$ the set of roots of f(x). For independent variables X_1, \dots, X_n

$$\prod_{(\alpha_1,\dots,\alpha_n)\neq (\alpha'_1,\dots,\alpha'_n)\in \mathcal{Q}\times\dots\times\mathcal{Q}} \{(\alpha_1-\alpha'_1)X_1+(\alpha_2-\alpha'_2)X_2+\dots+(\alpha_n-\alpha'_n)X_n\}$$

is a non-zero polynomial in $K[X_1, \dots, X_n]$ of degree $n^n(n^n-1)$. Hence there exist distinct non-zero rational integers a_1, \dots, a_n with

$$\prod_{(\alpha_1,\dots,\alpha_n)\neq (\alpha'_1,\dots,\alpha'_n)\in \mathscr{Q}\times\dots\times\mathscr{Q}} \{a_1(\alpha_1-\alpha'_1)+a_2(\alpha_2-\alpha'_2)+\dots+a_n(\alpha_n-\alpha'_n)\}\neq 0.$$

Hereafter we fix a_1, a_2, \dots, a_n . For each m $(1 \le m \le n)$ we define

$$\Phi_{(a_1,a_2,\ldots,a_m)}(X) = \prod_{(\alpha_1,\ldots,\alpha_m) \in \ \mathcal{Q} \times \cdots \times \mathcal{Q}} (X - (a_1\alpha_1 + a_2\alpha_2 + \cdots + a_m\alpha_m)).$$