34. A Shape of Eigenfunction of the Laplacian under Singular Variation of Domains. II

-The Neumann Boundary Condition-

By Shin OZAWA

Department of Mathematics, University of Tokyo

(Communicated by Kôsaku Yosida, M. J. A., April 12, 1984)

Let Ω be a bounded domain in \mathbb{R}^2 with smooth boundary \mathcal{I} . Let B_{ε} be the ε -ball whose center is $w \in \Omega$. We put $\Omega_{\varepsilon} = \Omega \setminus \overline{B}_{\varepsilon}$. We consider the following eigenvalue problem:

(1)
$$-\Delta_{x}u(x) = \lambda(\varepsilon)u(x), \qquad x \in \Omega_{\varepsilon}$$
$$u(x) = 0, \qquad x \in \tilde{\tau}$$
$$\frac{\partial u}{\partial \nu}(x) = 0, \qquad x \in \partial B_{\varepsilon}$$

where $\partial/\partial \nu$ denotes the derivative along the inner normal vector at x with respect to the domain Ω_{ϵ} . Let $0 < \mu_1(\epsilon) \le \mu_2(\epsilon) \le \cdots$ be the eigenvalues of (1). Let $0 < \mu_1 \le \mu_2 \le \cdots$ be the eigenvalues of $-\Delta$ in Ω under the Dirichlet condition on \mathcal{T} . We arrange them repeatedly according to their multiplicities. Let $\{\varphi_j(\epsilon)\}_{j=1}^{\infty}$ (resp. $\{\varphi_j\}_{j=1}^{\infty}$) be a complete orthonomal basis of $L^2(\Omega_{\epsilon})$ (resp. $L^2(\Omega)$ consisting of $-\Delta$ eigenfunctions of associated with $\{\mu_j(\epsilon)\}_{j=1}^{\infty}$ (resp. $\{\mu_j\}_{j=1}^{\infty}$).

We assume that w is the origin of \mathbb{R}^2 . We use the polar coordinates $z-w=(r\cos\theta, r\sin\theta)$. The aim of this note is to give the following:

Theorem 1. Fix j. Assume that μ_j is a simple eigenvalue. Let ρ be an arbitrary fixed positive number. Then,

$$\|\varphi_{j}(\varepsilon) - t_{\varepsilon}\varphi_{j}\|_{L^{\infty}(\Omega_{\varepsilon})} = O(\varepsilon^{1-\rho})$$

and

(4)
$$\left(\left(\frac{\partial}{\partial\theta}(\varphi_j(\varepsilon))\right)(\varepsilon\cos\theta, \varepsilon\sin\theta)\right) = 2t_{\varepsilon}(\partial_{wz}\varphi_j(w)|_{w=0}) + O(\varepsilon^{1-\rho})$$

hold, where $\partial_{\vec{wz}}\varphi_j(w)$ denotes the derivative of $\varphi_j(w)$ with respect to w along the vector \vec{wz} . Here

$$s_{\varepsilon} = \int_{a_{\varepsilon}} (\varphi_j(\varepsilon))(x)\varphi_j(x)dx, \qquad t_{\varepsilon} = \operatorname{sgn} s_{\varepsilon}.$$

Remarks. The remainders in (3), (4) are not uniform with respect to j. We can prove that s_{ϵ}^2 tends to 1 as $\epsilon \rightarrow 0$. The relationship between Theorem 1 and the following Theorem A in Ozawa [2] was discussed in Ozawa [2]. The Hadamard variational formula (see Garabedian-Schiffer [1]) plays an essential role in their relationship.