1. A Short Proof of a Theorem Concerning Homeomorphisms of the Unit Circle^{*)}

By Shinzô KAWAMURA Department of Mathematics, Yamagata University

(Communicated by Kôsaku Yosida, M. J. A., Jan. 12, 1984)

1. In [4], Rieffel classified the C^* -algebras associated with irrational rotations on the unit circle S^1 in the complex plane. Recently these C^* -algebras have played an important rôle in the theory of operator algebras.

The author and Takemoto [1] extended the Rieffel's result to the case of C^* -algebras associated with monothetic compact abelian groups. A compact abelian group G is said to be monothetic if there exists a homomorphism from the group Z of all integers to a dense subgroup of G (cf. [5, 2.3]). In [1] and [2], we considered more general cases. Namely, we studied the C^* -algebras associated with topologically transitive compact dynamical systems. A dynamical system (Ω, σ) is said to be topologically transitive if the homeomorphism σ admits a point ω in the compact space Ω such that the orbit $O(\omega)$ $(=\{\sigma^n(\omega): n \in \mathbb{Z}\})$ is dense in Ω (cf. [6, 5.4]). So we are interested in the existence and the classification of such dynamical systems. In case $\Omega = S^{1}$, every topologically transitive homeomorphism σ is conjugate to an irrational rotation. It is well-known that this theorem was established by Poincaré [2]. Nowadays we can see several kinds of proofs in many books, in which the rotation number of σ plays an important rôle. In this note, we give a short and elementary proof without rotation numbers.

2. Two homeomorphisms σ_1 and σ_2 of S^1 are said to be conjugate if there exists a homeomorphisms h on S^1 such that $\sigma_1 = h\sigma_2 h^{-1}$. For a real number θ , we denote by R_{θ} the rotation: $R_{\theta}(e^{2\pi i x}) = e^{2\pi i (x+\theta)}$ on S^1 . We shall prove the following equivalences.

Theorem. Let σ be a homeomorphism of S^1 . Then the following statements are equivalent;

(1) O(z) is dense in S^1 for some z in S^1 ,

(2) O(z) is dense in S^1 for every z in S^1 ,

(3) σ is conjugate to R_{θ} for some irrational number θ (0 $< \theta < 1/2$). When σ satisfies the condition (1) or (2), the rotation R_{θ} in (3) is uniquely determined.

^{*)} Partly supported by the Grant-in-Aid for Scientific Research (No. 58540056), the Ministry of Education, Science and Culture, Japan.