28. An Algebraic Computation of the Alexander Polynomial of a Plane Algebraic Curve

By Toshitake KOHNO

Department of Mathematics, Nagoya University

(Communicated by Kunihiko KODAIRA, M. J. A., March 12, 1983)

1. Introduction and the statement of the result. Let C be the algebraic curve in C^2 defined by a reduced polynomial f. We denote by $\Omega_{C^2}(*C)$ the algebra of the rational differential forms on C^2 which are holomorphic on the complement $X = C^2 - C$. Let $\mathcal{F}_{\alpha}: \Omega_{C^2}^{j}(*C) \to \Omega_{C^2}^{j+1}(*C)$ be the regular connection in the sense of Deligne ([1]) defined by $\mathcal{F}_{\alpha}\varphi = d\varphi + \alpha d \log f \wedge \varphi$ with a real number α . We denote by $H^j(\Omega_{C^2}(*C), \mathcal{F}_{\alpha})$ the *j*-th cohomology group of the de Rham complex

$$\cdots \longrightarrow \Omega_{C^2}^{j}(*C) \xrightarrow{V^{\alpha}} \Omega_{C^2}^{j+1}(*C) \longrightarrow \cdots$$

In [5] A. Libgober defined the Alexander polynomial of a plane algebraic curve. Let us review the definition.

Definition 1.1. Let \overline{C} be an irreducible algebraic curve in P^2 . We take a complex line H_{∞} such that H_{∞} intersects \overline{C} transversally. Let C denote $\overline{C} \cap (P^2 - H_{\infty})$ and let X be the complement of C in $P^2 - H_{\infty}$.

Let $p: X^{ab} \to X$ be an infinite cyclic covering of X. Then the ring of the Laurent polynomials $C[t^{-1}, t] = \Lambda$ operates on $H^1(X^{ab}; C)$ by means of the deck transformations. The Λ -module $H^1(X^{ab}; C)$ has a presentation of the form

$$\Lambda/_{(f_1(t))} \oplus \cdots \oplus \Lambda/_{(f_k(t))}$$

with some polynomials $f_1(t), \dots, f_k(t)$. We call the product $\prod_{j=1}^k f_j(t)$ the Alexander polynomial of \overline{C} (or C).

Remarks 1.2. i) In the proof of Theorem (1.3), we show that $\dim_{c} H^{1}(X^{ab}; C)$ is finite.

ii) The Alexander polynomial of the curve C is determined up to unit and does not depend on the choice of a line H_{∞} .

We have the following

Theorem 1.3. Let $C \cap C^2$ be an irreducible algebraic curve which intersects transversally with the line at infinity. Let h_{α} denote $\dim_{C} H^1(\Omega_{C^2}(*C, \nabla_{\alpha}))$ for a real number α . Let $\Delta_{C}(t)$ be the Alexander polynomial of C. Then we have

$$\mathcal{I}_{c}(t) = \prod_{\alpha < 1} (t - \exp 2\pi \sqrt{-1} \alpha)^{h_{\alpha}}.$$

Moreover the numbers α with $h_{\alpha} \neq 0$ are rational numbers with $n\alpha \in \mathbb{Z}$, where we denote by n the degree of our curve C.

2. Proof of the theorem. Let \overline{C} be the algebraic closure of C