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1. Let {X(t, w); 0_<t + oo} be a real valued separable, measur-
able, stochastically continuous self-similar process of order H0,
where "self-similar process" means that for any a0, {X(t)} and
{a-X(at)} have the same finite dimensional distribution. We will
denote it by X(t) -a-X(at). Set

Y(w)- sup [X(t, o)1.

Theorem 1. Let f(x) be a positive, continuous, non-decreasing

function defined on the positive half line. Assume that E[f(Y)] is
finite. Let (x) be a positive, continuous function defined on the posi-
tive half line which satisfies the following conditions;

( ) (x) is non-decreasing,
(ii) lim sup (x)/(x ) c< + oo,

n=l,2,...

and

(iii) (xf((x)))-’dx< + c.

Then, we have

lim IX(s’ o)1 <c a.s.
--.+ s(s)

Theorem 2. Let g(x) be a positive, continuous, non-increasing

function defined on the positive half line. Assume that E[g(Y)] is
finite. Let 4x(x) be a positive, continuous function defined on the posi-
tive half line which satisfies the following conditions;

( ) (x) is non-increasing,
and

( ii ) (xg(4x(x)))-dx< -I-

Then, we have

lim sup0,, IX(t, )1 _>1 a.s.
--.+ s"(s)

2. First, we prove the following

Lemma 1. If E[f(Y)] K + oo, then for x O, we have

P(suP,0, [x(t’ )l>-x) <-Klf(-Ex)"


