16. Transmutation Theory for Certain Radial Operators

By Robert CARROLL University of Illinois

(Communicated by Kôsaku Yosida, M. J. A., Feb. 12, 1983)

1. Introduction. For $Q_0 u = (\Delta_q u')' / \Delta_q$ based on a radial Laplace-Beltrami operator we studied general transmutation theory for operators $\hat{Q}u = Q_0 u + \hat{q}(x)u$ in [4] using various solutions of $\hat{Q}u = -k^2 u$ as important ingredients. In the present work we consider operators $\tilde{Q}u = x^2 Q_0 u + x^2 \{k^2 - \tilde{q}(x)\}u$ (with corresponding eigenfunction equations $\tilde{Q}u = \lambda^2 u$) and will concentrate on the case $\Delta_q = x^2$ which arises in various scattering problems (cf. [1], [2], [6]-[9], [11], [12]) so a certain amount of guideline information is available (cf. also [5]-B transmutes P into $Q, B: P \rightarrow Q$, if QBf = BPf for suitable f). We show here that with suitable modifications most of the constructions and techniques of the \hat{Q} theory have a version in the \tilde{Q} theory and we describe some of the basic transmutations and connection formulas.

2. Basic constructions. We take $\Delta_q = x^2$ and set $\varphi = xu$ so $Qu = \lambda^2 u$ is

(2.1)
$$x^2\varphi'' + x^2\{k^2 - \tilde{q}(x)\}\varphi = \lambda^2\varphi$$

(\tilde{q} real) and one writes $\lambda^2 = \sigma(\sigma+1) = \nu^2 - 1/4$ (so $\sigma \sim l =$ angular momentum and $\nu \sim l+1/2$). We denote by $\varphi(\nu, k, x)$ the "regular solution" of (2.1) ($\varphi \sim x^{\nu+1/2}$ as $x \to 0$) and by $f(\nu, \pm k, x)$ the "Jost solutions" (e.g. $f(\nu, -k, x) \sim e^{ikx}$ as $x \to \infty$) with the "Jost function" $f(\nu, -k) = W(f(\nu, -k, x), \varphi(\nu, k, x))$ (W(f, g) = fg' - f'g). Assume e.g. $\int_0^\infty x |\tilde{q}| dx < \infty$ and $\int_0^\infty x^2 |\tilde{q}| dx < \infty$ as in [2] but we do not emphasize hypotheses on \tilde{q} (cf. [1], [6], [9], [11], [12]); we want mainly $\varphi \sim \varphi_0$ and $f \sim f_0$ as e.g. $|\nu| \to \infty$, Re $\nu > 0$, where (corresponding to $\tilde{q} = 0$)

(2.2)
$$\varphi_0(\nu, k, x) = 2^{\nu} \Gamma(\nu+1) k^{-\nu} x^{1/2} J_{\nu}(kx);$$

$$f_0 = ((1/2) \pi k x)^{1/2} e^{(1/2) i \pi (\nu+1/2)} H^1_{\nu}(kx);$$

$$(f_0 = f_0(\nu, -k, x))$$
 and

 $f_0(\nu, -k) = 2^{\nu}(2/\pi)^{1/2} \Gamma(\nu+1) k^{-\nu+1/2} \exp\{(1/2)i\pi(\nu-1/2)\}.$

We think of k as fixed here and one knows then that $f(\nu, -k, x)$ is entire in ν while $\varphi(\nu, k, x)$ and $f(\nu, -k)$ are analytic for $\operatorname{Re} \nu > 0$ (the range of analyticity can be enlarged with suitable hypotheses on \tilde{q}). We follow formally now the procedure in [2] with some refinements and elaboration. Thus set $g(\nu, -k, r) = f(\nu, -k, r)/r$ and let Z denote the zeros ν_j (if any) of $f(\nu, -k)$ in $\operatorname{Re} \nu > 0$ with