2. On an Elaboration of M. Kac's Theorem Concerning Eigenvalues of $-\Delta$ in a Region with Randomly Distributed Small Obstacles

By Shin OZAWA

Department of Mathematics, University of Tokyo

(Communicated by Kôsaku YOSIDA, M.J.A., Jan. 12, 1983)

Let Ω be a bounded domain in \mathbb{R}^3 with smooth boundary γ . Let $0 \leq \mu_1(\varepsilon; w(m)) \leq \mu_2(\varepsilon; w(m)) \leq \cdots$ be the eigenvalues of $-\Delta(=-\text{div})$ grad) in $\Omega_{\epsilon,w(m)}=Q\setminus\overline{\bigcup_{i=1}^m B(\epsilon; w_i^{(m)})}$ under the Dirichlet condition on its boundary. We arrange them repeatedly according to their multiplicities. Here $B(\varepsilon; w) = \{x \in \mathbb{R}^3 : |x-w| \leq \varepsilon\}$ and $w(m)$ denotes the set of m- $\mathrm{points} \, \bigcup_{i=1}^m \{w_i^{(m)}\}. \ \ \mathrm{Let} \, \, V(x) \, \mathrm{be} \, C^\mathrm{r} \, \mathrm{function} \, \mathrm{on} \, \, \overline{\Omega} \, \, \mathrm{satisfying} \, \, V(x){\geq} \, 0 \, \, \mathrm{and}$

$$
\int_{a} V(x)dx=1.
$$

We consider Ω as the probability space with probability density $V(x)dx$.

Kac's theorem is the following

Theorem (Kac [1], Rauch-Taylor [5]). Fix k and $\alpha > 0$. Then $\lim P(w(m) \in \Omega^m; |\mu_k(\alpha/m; w(m)) - \mu_k^V| \leq \varepsilon) = 1$

for any $\varepsilon > 0$. That is, $\mu_k(\alpha/m; w(m))$ tends to μ_k^v in probability. Here μ_k^V is the k-th eigenvalue of $-\Delta+4\pi\alpha V(x)$ in Ω under the Dirichlet condition on γ .

In this note we give an elaboration of Kac's theorem. We have the following

Theorem 1. Fix k and $\alpha > 0$. Then $\lim_{k \to \infty} P(w(m) \in \Omega^m; |\mu_k(\alpha/m; w(m)) - \mu_k^V| \leq \varepsilon m^{-\beta}) = 1$

for any $\varepsilon > 0$ and any fixed $\beta \in [0, 1/4)$.

Remark. Kac [1] proved his result by using the theory of Wiener sausage in case $V(x) = (volume of \Omega)^{-1}$. After Kac [1], Rauch-Taylor [5] gave the result for general $V(x)$ by combining functional analysis of operators and the Feynmann-Kac formula. See also. Simon [6], Papanicolaou-Varadhan [4].

Our proof of Theorem 1 is quite different from [1], [5]. The main idea is to use perturbational calculus, using Green's function of $-\Lambda$. A direct construction of an approximate Green's function of -4 in $\Omega_{a/m,w(m)}$ under the Dirichlet condition on $\partial \Omega_{a/m,w(m)}$ in terms of Green's function of $-\Delta$ in Ω under the Dirichlet condition on γ enables. us to give a remainder estimate in Theorem 1. For the method using