On an Elaboration of M. Kac's Theorem Concerning Eigenvalues of −4 in a Region with Randomly Distributed Small Obstacles

By Shin OZAWA

Department of Mathematics, University of Tokyo

(Communicated by Kôsaku Yosida, M. J. A., Jan. 12, 1983)

Let Ω be a bounded domain in \mathbb{R}^{3} with smooth boundary γ . Let $0 \leq \mu_{1}(\varepsilon; w(m)) \leq \mu_{2}(\varepsilon; w(m)) \leq \cdots$ be the eigenvalues of $-\Delta(=-\operatorname{div} \operatorname{grad})$ in $\Omega_{\varepsilon,w(m)} = \Omega \setminus \bigcup_{i=1}^{m} B(\varepsilon; w_{i}^{(m)})$ under the Dirichlet condition on its boundary. We arrange them repeatedly according to their multiplicities. Here $B(\varepsilon; w) = \{x \in \mathbb{R}^{3}; |x-w| < \varepsilon\}$ and w(m) denotes the set of mpoints $\bigcup_{i=1}^{m} \{w_{i}^{(m)}\}$. Let V(x) be C^{1} function on $\overline{\Omega}$ satisfying $V(x) \geq 0$ and

$$\int_{\Omega} V(x) dx = 1.$$

We consider Ω as the probability space with probability density V(x)dx.

Kac's theorem is the following

Theorem (Kac [1], Rauch-Taylor [5]). Fix k and $\alpha > 0$. Then $\lim P(w(m) \in \Omega^m; |\mu_k(\alpha/m; w(m)) - \mu_k^v| < \varepsilon) = 1$

for any $\varepsilon > 0$. That is, $\mu_k(\alpha/m; w(m))$ tends to μ_k^v in probability. Here μ_k^v is the k-th eigenvalue of $-\Delta + 4\pi\alpha V(x)$ in Ω under the Dirichlet condition on γ .

In this note we give an elaboration of Kac's theorem. We have the following

Theorem 1. Fix k and $\alpha > 0$. Then $\lim_{m \to \infty} P(w(m) \in \Omega^m; |\mu_k(\alpha/m; w(m)) - \mu_k^v| < \varepsilon m^{-\beta}) = 1$

for any $\varepsilon > 0$ and any fixed $\beta \in [0, 1/4)$.

Remark. Kac [1] proved his result by using the theory of Wiener sausage in case $V(x) = (\text{volume of } \Omega)^{-1}$. After Kac [1], Rauch-Taylor [5] gave the result for general V(x) by combining functional analysis of operators and the Feynmann-Kac formula. See also Simon [6], Papanicolaou-Varadhan [4].

Our proof of Theorem 1 is quite different from [1], [5]. The main idea is to use perturbational calculus using Green's function of $-\Delta$. A direct construction of an approximate Green's function of $-\Delta$ in $\Omega_{a/m,w(m)}$ under the Dirichlet condition on $\partial\Omega_{a/m,w(m)}$ in terms of Green's function of $-\Delta$ in Ω under the Dirichlet condition on γ enables us to give a remainder estimate in Theorem 1. For the method using