142. A Note on the Number of Irreducible Characters in a p-Block with Normal Defect Group

By Masafumi MURAI

(Communicated by Shokichi IYANAGA, M. J. A., Dec. 12, 1983)

1. Let G be a finite group and p be a prime. Let B be a p-block of G with defect group D. We denote by k(B) the number of ordinary irreducible characters in B. R. Brauer [1] conjectured

$$(K): k(B) \leq |D|.$$

In [5] it is shown that (K) is true if G is p-solvable and if p is sufficiently large compared with the sectional rank of D.

The purpose of this note is to prove the following

Theorem. For any positive integer n, there exists a constant b_n depending only on n such that the following statement is true: Let B be a p-block of a group G with normal defect group D. Assume that the sectional rank of D equals n. Then, if p is larger than b_n , we have $k(B) \leq |D|$.

2. Let B be a p-block of a group G with defect group D, which is normal in G. Let b be a p-block of $DC_a(D)$ covered by B and T_b be the inertia group in G of the block b. Then $[T_b: DC_a(D)]$ is prime to p. Let B' be the unique block of T_b that covers b. Then D is the defect group of B' and k(B') = k(B). In order to prove that (K) is true for B we may assume that $G = T_b$, B = B'. Then $G/C_a(D)$ contains the normal p-Sylow group $DC_a(D)/C_a(D)$, so that $G/C_a(D)$ has a p-complement $L/C_a(D)$. Set $\overline{L} = L/C_a(D)$. Form the semi-direct product H $= \overline{L}D$ with the natural (faithful) action of \overline{L} on D. Theorem follows immediately from the result in [5] mentioned above and the following

Proposition. Let the notation be as above. We have $k(B) \leq cl(H)$. Here cl(X) denotes the number of conjugacy classes of X for a group X.

Proof. Let θ be the canonical character of b. For every irreducible character χ of D, define the class function $\tilde{\chi}$ on $DC_{g}(D)$ as follows:

$$\tilde{\chi}(z) = \begin{cases} \chi(x)\theta(y) & \text{if } x \in D \\ 0 & \text{otherwise,} \end{cases}$$

where x and y denote the p-part and p'-part of $z \in DC_{g}(D)$, respectively. Then the map \sim is a bijection from the set of irreducible characters of D onto the set of irreducible characters in b (see [2], (V. 4.7)). Let $\{\chi_i\}$ be a complete set of representatives of \overline{L} -conjugate