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1. As in [4], the generator of a certain type of semigroup is
represented as an integro-differential operator.

Here, we solve a converse problem for an operator of this type,
which is spatially homogeneous on R. Let
( 1 ) Af(x)--Af(x)+Aif(x), x--(xl, ..., x) e R,

Af(x)-- ]1,< .aDf(x),

Af(x) af\(o {f(Y+ x)--p(y) .,<’ l/a! D,f(x)y}l(dy).
a,’s are complex constants and D,f(x)=3llf(x)/3x.. .3x, [a]=a +..-
+a, a!=c !...a! and y.=y...y or multi-index a=(a,..., a).
/ is a complex valued a-finite measure on (R\{0}, -\(0) such that

(2)
J

p(y) is an isotropic C function on R such that
( 3 ) 0<p(y) <1, ]y[n_l p(y)l, y e R, 1-p(y)=(([yln+), as y-0.
We assume that a=0 for some a with la]=m, except the case m=0.

The problem here is to obtain the fundamental solution Q(t, x, .) of
( 4 ) (/t)u.(t, x)=Au(t, x),
when A is essentially of elliptic type..

2. Let
a(z)=a(z)+a(z),

where,

a.(z) 11<
( 5 ) ax(z) e’-p(y) , 1/k (iy. z) l(dy), y. z= yz.

The measure Z is called degenerate, i its support is contained in some
hyperplane, which passes through the origin and has dimension at
most N--1. is called rapidly decreasing at , i, for each natural
number l,

For the second part A of A, we have
Theorem 1. Let be given by a positive measure + as

( 7 )’ g= (-
1) For a real number s, [s] denotes the largest integer such that l<s.


