14. Surjectivity for a Class of Dissipative Operators

By Yoshikazu Kobayashi

Faculty of Engineering, Niigata University

(Communicated by Kôsaku Yosida, M. J. A., Feb. 12, 1983)

Let X be a real Banach space with the norm $\|\cdot\|$. We will call a mapping $A: X \to 2^x$ a (multi-valued) operator in X. The domain of A is the set $D(A) = \{x \in X; Ax \neq \phi\}$ and the range of A is the set R(A) $= \bigcup_{x \in D(A)} Ax$. We also define the generalized domain $D_a(A)$ of A as the set of $x \in X$, for which there exist sequences x_n, y_n and a positive number M such that $x_n \to x$ as $n \to \infty$, $y_n \in Ax_n$ and $||y_n|| \leq M$ for n $=1, 2, \cdots$. We denote the infimum of such numbers M by |Ax| for each $x \in D_a(A)$. It is easy to show that $D(A) \subset D_a(A) \subset \overline{D(A)}$ and the set $\{x \in D_a(A); |Ax| \leq r\}$ is closed in X for each $r \geq 0$.

For operators A and B in X and scalars λ and μ , we define the operator $\lambda A + \mu B$ by setting $(\lambda A + \mu B)x = \{\lambda y + \mu z; y \in Ax \text{ and } z \in Ax\}$ for $x \in D(A) \cap D(B)$ and $D(\lambda A + \mu B) = D(A) \cap D(B)$. An operator A in X is single-valued if Ax is singleton for $x \in D(A)$ and, in this case, we use Ax to denote both the singleton and its element. Let I denote the identity operator in X.

An operator A in X is said to be dissipative if

 $||x_1-x_2|| \leq ||x_1-x_2-\lambda(y_1-y_2)||$

for $\lambda > 0$, $x_i \in D(A)$ and $y_i \in Ax_i$, i=1,2. A dissipative operator A in X is said to be *m*-dissipative if $R(I-\lambda A)=X$ for $\lambda > 0$.

The following theorem is proved in [4], Corollary 2.

Theorem 1. Let A be a dissipative operator in X. Then the following (i) and (ii) are equivalent to each other.

(i) A is m-dissipative.

(ii) For each $x \in D_a(A)$ and $w \in X$, there exists a sequence $\delta_n > 0$ such that $\delta_n \to 0$ as $n \to \infty$ and $R(I - \delta_n(A + w)) \ni x$ for $n = 1, 2, \cdots$.

As an application of this result, the following theorem due to Browder [1] can be readily proved.

Theorem 2. Let A be a single-valued dissipative operator in X which is locally Lipshitz continuous on X=D(A). Then A is m-dissipative.

Some other applications of Theorem 1 can be found in [4]. Recently, in [5], Ray gave a simple proof of above Theorem 2, by using Caristi's fixed point theorem established in [2]. The purpose of this paper is to show that the Ray's argument also applies to the proof of Theorem 1. In fact, we establish the following general lemma, from