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1. Let P(, z, E) be a Markov transition probability on a compact
manifold D such that {P,, {>>0}, given by

P,f(x)=jn F@)PE, x, dy),

is a semigroup on C(D). Then, it is known that, under a certain
regularity condition, the generator A of {P,, t>0} is represented as a
second order integro-differential operator for smooth f in the domain
of A([5]). This type of theorems originally go back to Kolmogorov
[3], and various versions are obtained as in Yosida [7] and others.

If D is a bounded open domain with smooth boundary in a mani-
fold, and if {P,, t>>0} is a diffusion semigroup on C(D), then smooth
functions in the domain of the generator satisfy a boundary condition
given by a second order integro-differential operator under a certain
regularity condition. This was obtained by Wentzell [6] as a partial
extension of Feller [1], [2] for one dimensional diffusion.

Here, in this note, we extend the representation theorems of this
type for a complex valued kernel Q(¢, x, ). The point is that Q(, x, E)
has not the non-negative property, and the orders of the correspond-
ing integro-differential operators are no more bounded by 2. They
depend essentially on the order of |Q| (¢, x, E') near the point x as £\|0,
where |Q] is the measure given by the variation of @. Neither the
semigroup property nor the regularity of

Qr@=| Fwae, = a),

as a function of x, are essential for the representations. But, the
corresponding propositions for semigroups can be derived easily from
Theorems 1-4. The proofs of theorems will be published elsewhere.
2. Let D be a manifold, or an open domain with boundary 2D in
a manifold of dimension N, where the manifold and D are of class
C=. For a fixed point « in D=DUaD," let {£(y), 1<k <N} be a local
coordinate in a neighbourhood of x, such that £ (y)’s are defined and
continuous on D, and &P (y)=0, 1<k<N, if and only if y=2. When

1) When D is a manifold, we understand 11at dD=¢ and D=D.




