119. Boundary Value Problems for Some Degenerate Elliptic Equations of Second Order

By Hirozo OKUMURA

Department of Applied Mathematics and Physics, Kyoto University

(Communicated by Kôsaku Yosida, M.J.A., Nov. 12, 1983)

1. Let Ω be a bounded domain in R^N with C^{∞} boundary $\partial \Omega$ and $a^{ij}(x)=a^{ji}(x), b^{j}(x)$ and $c(x)$ be real valued functions belonging to $C^{\infty}(\overline{Q})$. In this note we shall consider the regularity up to the boundary of the solution for the following boundary value problem:

[**P**]
$$
Au = \sum_{i,j=1}^{N} a^{ij}(x) \frac{\partial^2 u}{\partial x_i \partial x_j} + \sum_{j=1}^{N} b^j(x) \frac{\partial u}{\partial x_j} + c(x)u = f(x) \quad \text{in } \Omega,
$$

\n $u|_{\partial \Omega} = 0,$

under the assumptions on A :

 $\mathrm{A1} \qquad a_{\scriptscriptstyle 2}(x,\xi) \!=\! \sum\limits_{i,j=1}^{N} a^{ij}(x) \xi_i \xi_j \!\geq\! 0 \qquad \text{for}\,\, (x,\xi) \in \overline{\varOmega} \!\times\! (R^{\scriptscriptstyle N} \backslash \{0\}).$

A2
$$
c(x) < 0
$$
 and $c^*(x) = c(x) - \sum_{j=1}^N \frac{\partial b^j}{\partial x_j}(x) + \sum_{i,j=1}^N \frac{\partial^2 a^{ij}}{\partial x_i \partial x_j}(x) < 0$ on $\overline{\Omega}$.

A3
$$
\partial\Omega
$$
 is non-characteristic for A.

A4
$$
a_1^s(x,\xi) = \sum_{j=1}^N \left\{ b^j(x) - \sum_{i=1}^N \frac{\partial a^{ij}}{\partial x_i}(x) \right\} \xi_j \neq 0
$$

for $(x,\xi) \in \sum_{i=1}^N \left\{ (x,\xi) \in \overline{\Omega} \times (R^N \setminus \{0\}) \mid a_2(x,\xi) = 0 \right\}.$

Several existence, uniqueness and regularity theorems of the problem [P] were proved in Fichera [1], [2], Kohn-Nirenberg [4] and Oleinik [5], Oleinik-Radkevič [6]. In fact, it is known that there is a uniquely determined weak solution $u \in L^2(\Omega)$ of [P] with $f \in L^2(\Omega)$ if the conditions A1, A2 and A3 hold. Here $u \in L^2(\Omega)$ is called the weak solution of [P] with $f \in L^2(\Omega)$ if the identity

(1.1) $\int_a u \overline{A^i v} dx = \int_a f \overline{v} dx$ holds for all $v \in C^{\infty}(\overline{\Omega})$ with $v|_{\partial \Omega} = 0$, where

$$
A^t v = \sum_{i,j=1}^N a^{ij}(x) \frac{\partial^2 v}{\partial x_i \partial x_j} - \sum_{j=1}^N \left\{ b^j(x) - 2 \sum_{i=1}^N \frac{\partial a^{ij}}{\partial x_i}(x) \right\} \frac{\partial v}{\partial x_j} + c^*(x) v.
$$

 $A^t v = \sum_{i,j=1}^N a^{ij}(x) \frac{\partial^2 v}{\partial x_i \partial x_j} - \sum_{j=1}^N \left\{ b^j(x) - 2 \sum_{i=1}^N \frac{\partial a^{ij}}{\partial x_i} \right\}$
Concerning the local regularity of this v
*T*heorem 5.9 in Hörmander [3] to the op
A1 and A4 hold (see also Radkevič [7]).
c solutio Concerning the local regularity of this weak solution, we can apply Theorem 5.9 in Hörmander $[3]$ to the operator A if the conditions A1 and A4 hold (see also Radkevič $[7]$). That is, if u is the weak solution of [P] with $f \in H^k(Q)$,¹¹, then we have $u \in H^{k+1}(U)$ for any open set U such that $\overline{U} \subset \Omega$. This is the reason why we consider the. boundary value problem [P].

¹⁾ $H^k(\Omega)$ denotes the Sobolev space on Ω for non-negative integer k.