113. Construction of Certain Real Quadratic Fields

By Tsuyoshi UEHARA
Department of Mathematics, Saga University

(Communicated by Shokichi IYANAGA, M. J. A., Oct. 12, 1983)

Let n be a given natural number. In this note we shall construct real quadratic fields whose fundamental units are congruent to ± 1 modulo n. We also give a new proof of the existence of infinitely many real quadratic fields each with class number divisible by n (cf. Weinberger [3], Yamamoto [4]).

Let Z, Q be the ring of rational integers, the field of rational numbers respectively. For a rational integer $m \neq 0$ and a prime p we denote by ord, m the greatest nonnegative rational integer f such that $m \equiv 0 \pmod{p^f}$.

Lemma. Let α , β be integers of a quadratic field K such that $\alpha = \pm \beta^n$ for some n > 1 in Z. We write $\alpha = (a + b\sqrt{d})/2$, $\beta = (s + t\sqrt{d})/2$ with a, b, s, t in Z, where d is the discriminant of K. If p is a prime dividing d such that $\operatorname{ord}_n a = \operatorname{ord}_n 2$, then we have

$$\operatorname{ord}_{p} t = \operatorname{ord}_{p} b - \operatorname{ord}_{p} n$$

except in the following two cases: (i) p=2, $\operatorname{ord}_2 d=2$ and $n \equiv 0 \pmod 2$, (ii) p=3, $d \equiv 6 \pmod 9$ and $n \equiv 0 \pmod 3$.

Proof. First assume that $\operatorname{ord}_{p} d = \operatorname{ord}_{p} (4p)$. Then $\operatorname{ord}_{p} a = \operatorname{ord}_{p} 2$ implies $\operatorname{ord}_{p} s = \operatorname{ord}_{p} 2$. If $5 \leq k \leq n$, we have $\operatorname{ord}_{p} \binom{n}{k} \geq \operatorname{ord}_{p} n - \operatorname{ord}_{p} k \geq \operatorname{ord}_{p} n + 1 - k/2$. Hence

 $b \equiv \pm nt(s/2)^{n-3}\{(s/2)^2 + (n-1)(n-2)t^2d/24\}$ (mod p^{g+1}) with $g = \operatorname{ord}_p(nt)$. Thus $\operatorname{ord}_p b = g$ holds except in the case (ii). Next let p = 2, $\operatorname{ord}_2 d = 2$ and (n, 2) = 1. Then $\beta^2 \equiv 0$ or 1 (mod 2) according as $s/2 \equiv t$ or $t+1 \pmod 2$. Since $\operatorname{ord}_2 a = 1$, $\alpha \equiv \beta \pmod 2$ and $s/2 \equiv t+1 \equiv 1 \pmod 2$. Hence $b \equiv \pm nt(s/2)^{n-1} \pmod 2t$. Thus the lemma follows.

Theorem. Let n be a given natural number and let k>1 be a square free rational integer such that $k\equiv 0\pmod p$ for any prime p dividing n. We put

$$\varepsilon = (kn^2 \pm 2 + n\sqrt{m})/2$$
 with $m = k(kn^2 \pm 4)$,

and assume that $kn^2 \pm 4 \neq c^2$, $2c^2$ for any c in Z and that $m \equiv 3 \pmod{9}$ if 3 divides n. Then $\varepsilon > 1$ is the fundamental unit of $K = Q(\sqrt{m})$.

Proof. It is easy to see that $\varepsilon > 1$ is a unit of K with norm 1. We write $kn^2 \pm 4 = c^2u$ with c in Z and a square free rational integer u > 0. From the assumption we have $u \ge 3$. Since (u, k) = 1 or 2, the discriminant d of K is ku if n is odd, and is 4ku if n is even. Note that