112. On Certain Cubic Fields. IV

By Mutsuo WATABE
Department of Mathematics, Keio University

(Communicated by Shokichi IYANAGA, M. J. A., Oct. 12, 1983)

1. We shall use the following notations: For an algebraic number field k, the discriminant, the class number, the ring of integers and the group of units are denoted by D(k), h(k), \mathcal{O}_k and E_k respectively. The discriminant of an algebraic integer ρ will be denoted by $D_k(\rho)$ and the discriminant of a polynomial $h(x) \in \mathbf{Z}(x)$ by D_k . (*/*) means the quadratic residue symbol.

The purpose of this note is to give some devices of generating cubic fields of certain types with even class numbers. We shall prove:

Theorem A. Let $K = Q(\theta)$, $Irr(\theta; Q) = f(x) = x^3 - mx^2 - (m+3)x$ -1, $m \in Z$ with odd m and $m \ge 1$. Suppose there exists a prime number q satisfying

- (i) $(r(\theta), q)=1$, where $D_K(\theta)=r(\theta)^2D(K)$,
- (ii) $f(x) \equiv (x+a)(x+b)(x+c) \pmod{q}$, where any two of a, b, c $\in \mathbb{Z}$ are not congruent $\text{mod } q, a > 0, a \not\equiv 0, m, m+1 \pmod{4}$,
 - (iii) ((a-b)/q) = -1,
- (iv) $-f(-a)=a^3+ma^2-(m+3)a+1=t^2$ for some odd $t \in \mathbb{Z}$. Then we have $2 \mid h(K)$.

Theorem A'. Let $K = \mathbf{Q}(\theta)$, $Irr(\theta; \mathbf{Q}) = f(x) = x^3 - mx^2 - (m+3)x$ -1, $m \in \mathbf{Z}$ with $3 \nmid m$ and $m \geq 1$.

- (1) Suppose $m \equiv 3 \pmod{4}$ and $2m+3=u^2$ for some $u \in \mathbb{Z}$. If 2m+3 has a prime factor q such that $q=12s\pm 5$, then we have $2 \mid h(K)$. Examples: 11, 23. It is easy to see that there are infinitely many m's satisfying this condition.
- (II) Suppose $m \equiv 1 \pmod{4}$. Let q be a prime factor $(\neq 7)$ of 6m+19. Then we have
- (*) $f(x) \equiv (x+3)(x+b)(x+c) \pmod{q}$, where $b \not\equiv 3$, $c \not\equiv 3 \pmod{q}$. If $6m+19=v^2$ for some $v \in \mathbb{Z}$ and ((3-b)/q)=-1 in (*), we have $2 \mid h(K)$. Examples: m=17, 25.

Theorem B. Let $F = Q(\delta)$, Irr $(\delta; Q) = g(x) = x^3 - nx^2 - (n+1)x - 1$, $u \in Z$ with $n \equiv 3 \pmod{4}$ but $n \neq 0, \pm 1, \pm 2, \pm 3, \pm 4, \pm 5, -6$. If D_g is square free, then we have $2 \mid h(F)$. Examples: n = 7, 11, 15.

2. Proof of Theorem A. As $\sqrt{D_f} = m^2 + 3m + 9 \in \mathbb{Z}$, K/\mathbb{Q} is totally real and Galois. In virtue of (i), (ii), (q) is completely decomposed in K in the form $(q) = q_1q_2q_3$, where $q_1 = (q, \theta + a)$, $q_2 = (q, \theta + b)$,