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1. We shall use the following notations" For an algebraic num-
ber field k, the discriminant, the class number, the ring of integers
and the group of units are denoted by D(k), h(k), and E respec-
tively. The discriminant of an algebraic integer p will be denoted
by D(p) and the discriminant of a polynomial h(x) e Z(x) by D. (./.)
means the quadratic residue symbol.

The purpose of this note is to give some devices f generating
cubic fields of certain types with even class numbers. We shall prove"

Theorem A. Let K=Q(), Irr ( Q) f(x) x mx- (mA- 3)x
-1, m e z with odd m and m>1. Suppose there exists a prime number
q satisfying

( ) (r(t?), q)--l, where Dx(6)=r(6)D(K),
(ii) f(x)----(x+a)(x+b)(x+c) (mod q), where any two of .a, b, c

e Z are not congruent mod q, a>0, a0, m, m+ 1 (mod 4),
(iii) ((a- b)/q) 1,
(iv) -f(- a) =.,a +ma-(m+ 3)a+ 1 t for some odd t e Z.

Then we have 21 h(K).
Theorem A’. Let K= Q(t?), Irr (t? Q) f(x) x-mx-(m+ 3)x

-1, m e z with 3Xm and ml.
(I) Suppose m=_3 (mod4) and 2m+3=u for some u eZ. If

2m+3 has a prime factor q such that q=12s_5, then we have 21 h(K).
Examples" 11, 23. It is easy to see that there are infinitely many m’s
satisfying this condition.

(II) Suppose m-1 (md4). Let q be a prime factor (:/:7) of
6m+19. Then we have
( ) f(x)----(x+3)(x+b)(x+c) (mod q), where b3, c3 (md q).

If 6m+19=v for some v eZ and ((3-b)/q)=-I in (.), we have
2]h(K). Examples" m=17, 25.

Theorem B. Let F=Q(5), Irr (5 Q)=g(x)=x-nx-(n+l)x-1,
u e Z with n--3 (mod4) but n:/:9, +_1, ++_2, +_3, +4, +__5, -6. If Dq
is square free, then we have 21h(F). Examples" n=7, 11, 15.

2. Proof of Theorem A. As /D=m+3m+9 eZ, K/Q is to-
tally real and Galois. In virtue of (i), (ii), (q) is completely decomposed
in K in the form (q) qq.q, where q (q, t + a), q (q, t + b),


