110. A Note on Γ -Rings

By Bhavanari SATYANARAYANA Department of Mathematics, Nagarjuna University (Communicated by Shokichi IyanaGa, M. J. A., Oct. 12, 1983)

Introduction. Throughout the paper, M stands for a Γ -ring, as defined by Barnes [1]. We shall utilize the standard notations and definitions in Barnes [1] and Hsu [2]. In [2] Hsu has introduced the notion of g-prime ideals in Γ -rings and proved that for any ideal Aof the Γ -ring M, the radical $r_q(A)$ of A (that is, the set of all elements x of M such that every g-system containing x contains an element of A) is the intersection of all g-prime ideals containing A. In this paper we introduce the notion of g-halfprime ideals in Γ -rings and prove that an ideal A of the Γ -ring M is g-halfprime if and only if $A = r_q(A)$.

Preliminary definitions. If a is an element of the Γ -ring M, then $\langle a \rangle$ denotes the principal ideal generated by a. If S is a subset of M, we call S an *sp*-system if $S=\emptyset$ or $a \in S$ implies $\langle a \rangle^2 \cap S \neq \emptyset$. A nonempty subset S of M is called a *g*-sp-system if S contains an sp-system S' such that $g(x) \cap S' \neq \emptyset$ for every element x of S, where S' is called a *kernel* of S. An ideal I of M is said to be *g*-halfprime if $C(I)=M \setminus I$ is a *g*-sp-system.

Example. Consider Z, the ring of integers, as a Γ -ring with $\Gamma = Z$. Let p, q be two distinct prime numbers. Define $g(a) = \langle \{a, pq\} \rangle$. Now $g(pq) = \langle pq \rangle$ and hence $C(\langle pq \rangle)$ is g-sp-system with kernel $C(\langle pq \rangle)$, which is not a g-system.

Suppose K is a subset of M and satisfies the condition: For each $a \in K$, there exists an sp-system $S \subseteq K$ such that $g(a) \cap S \neq \emptyset$. Then consider the set X, which is the union of all sp-systems which are contained in K. One can easily verify that K is a g-sp-system with kernel X. Hence a subset K of M is a g-sp-system if and only if K satisfies the condition: For each $a \in K$, there exists an sp-system $S \subseteq K$, such that $g(a) \cap S \neq \emptyset$.

Main Theorem. Before proving our main theorem, we prove the following

Lemma. If S is an sp-system and $x \in S$, then there exists an m-system X (Def. 3.2. in [2]) such that $x \in X$ and $X \subseteq S$.

Poof. Let S be an sp-system and x an element of S. Then there exists an element $x_1 \in \langle x \rangle^2 \cap S$. Again since S is an sp-system, there exists $x_2 \in \langle x_1 \rangle^2 \cap S$. If we continue this process, we get a sequence $\{x_i\}$ of elements in S with $x_0 = x$ and $x_{i+1} \in \langle x_i \rangle^2 \cap S$ for $i \ge 0$. Now x_i