108. An Approach by Difference to a Quasi-Linear Parabolic Equation

By Michiaki WATANABE

Faculty of General Education, Niigata University

(Communicated by Kôsaku Yosida, M. J. A., Oct. 12, 1983)

1. Introduction. This paper treats the semi-group associated with the Cauchy problem for the equation

(1) $\partial u/\partial t = \Delta \phi(u)$ for t > 0 and $x \in \mathbb{R}^N$ $\left(\Delta = \sum_{i=1}^N \partial^2 / \partial x_i^2 \right)$

through the difference scheme

(2)
$$h^{-1}(u(t+h, x)-u) = \sum_{i=1}^{N} L^{-2} \{ \phi(u(t, x+Le_i)) - 2\phi(u) + \phi(u(t, x-Le_i)) \}$$
$$(e_i = (0, \dots, 0, 1, 0, \dots, 0))$$

where ϕ is a differentiable function on R with $\phi(0)=0$ such that ϕ' is non-negative and bounded on every finite sub-interval of R. The convention

(3) $C_i(t)f(x)=(f(x+te_i)+f(x-te_i))/2$ $(i=1, \dots, N)$ enables us to rewrite (2) as

$$(2)' \qquad h^{-1}(u(t+h,x)-u(t,x)) = \sum_{i=1}^{N} 2L^{-2}(C_i(L)-I)\phi(u(t,x)),$$

and provides a strongly continuous cosine family $C_i(t)$, $t \in R$ in a Banach space $L^1(\mathbb{R}^N)$ with norm $\|\cdot\|_1$ for each fixed *i*. For cosine families in Banach spaces, see [7] for example.

The Cauchy problem for (1) arises in mathematical models of many physical situations. The semi-group approaches to (1) in $L^1(\mathbb{R}^N)$ were made by Benilan, Brezis and Crandall (see [2], [4]). The method is essentially based on their theory on the semi-linear equation $\phi^{-1}(u)$ $-\Delta u = f$ developed in [1]. But, our method is more constructive and provides applications to numerical analysis for (1). Indeed, our main task is to show that

$$\left(I - \lambda \sum_{i=1}^{N} 2L^{-2} (C_i(L) - I) \phi\right)^{-1} \quad \text{converges in } L^1(\mathbb{R}^N) \text{ as } L \downarrow 0.$$

2. Main results. Consider the operator C_h defined by

(4)
$$C_h u = u + h \sum_{i=1}^N 2L^{-2}(C_i(L) - I)\phi(u)$$

where h, L>0 and $L^2=2Nh \sup_{|r|\leq m} \phi'(r)$ for an integer m. Let A_i be, for each i, the infinitesimal generator of the strongly continuous cosine family $C_i(t), t \in R$ in $L^1(R^N)$ defined by (3), and let \overline{A} be the smallest closed extension of $\sum_{i=1}^N A_i$ in $L^1(R^N)$. We are concerned with a gener-