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§1. Introduction. The purpose of this note is to announce some

equivalence relations among certain particular polyhedral mean value
type functional equations without any regularity assumptions.

Let (G, +) be an Abelian group in which it is possible to divide by
2, and let F be a field of characteristic zero. For a function f: GXG
X G—F we define the shift operators X!, Xi, and X} by (X!f)(«, ¥, 2)
=flx+t,v,2), (Xif) (@, y,2)=rf(x,y+t,2), and (Xif)(z,y,2) = f(x,v¥,
z+1t) for all #,y,2,teG. In particular 1=X}=X)=X? denotes the
identity operator. We note that the ring of linear transformation
generated by this family of transformations is commutative and dis-
tributive.

L. Etigson [2] and L. Sweet [5] considered the equivalence of the
following cube and octahedron mean value functional equations, which
are the most fundamental particular polyhedral mean value type
functional equations, under the assumption f: GXGXG—F:

1.1 CON, y,2)=8f(x, Y, 2),
where the operators C(¢) and O(t) are defined by

CO=]] Xi+X:) and O@B=3; X+ X7,

In this note we will consider the equivalence of (1.1) and the poly-
hedral mean value functional equation
where the operator T'(¢) is defined by

T(t) =X+ X)X+ X579+ (X + X7 )X+ X7 )+ (X5 4+ Xy )X+ X79).

By a geometric interpretation we call equation (1.3) a truncated cube
mean value functional equation.

§2. Equivalence of (1.1) and (1.3). Theorem 1. If a function
1 GXGXG—F satisfies equation (1.1) for all z, y, 2, t € G, then also
1.8) for all z,y, 2, te G and conversely so that (1.1) and (1.3) are
equivalent.

By using the operator notations in §1 we have C(@2¢) =]] (X¥
+X;%*) and readily obtain

(i) CEAy=CHNCEN=C2H+2T21)+40@2tH)+8,

(ii) O@y=0W)O0@)=02t)+2T(t)+6,



