12. Hodge Filtrations on Gauss-Manin Systems. II

By Morihiko SAITO

Research Institute for Mathematical Sciences, Kyoto University

(Communicated by Kunihiko KODAIRA, M. J. A., Feb. 12, 1983)

Let $f: X \to Y$ be a projective morphism of algebraic manifolds. The theory of Deligne, Gabber, Beilinson, and Bernstein describes the decomposition of the direct image Rf_*C_x in $D_c^b(C_Y)$, and gives the Poincaré duality and the hard Lefschetz theorem (cf. [3]). We prove the theorem for a one-parameter projective family (i.e., f is flat projective and dim Y=1) without assuming algebraicity (cf. Theorem (1.1) and Corollary (1.2)). We use essentially the theory of filtered \mathcal{D} -Modules [1], [5], which enables us to apply the theory of limit mixed Hodge structure of Steenbrink.

I would like to thank Profs. K. Saito and M. Kashiwara for useful discussions.

§ 1. Let $f: Y \to S$ be a projective morphism of complex manifolds with dim Y=n+1 and dim S=1. In [5], we defined the Gauss-Manin system $\int_{f} \mathcal{O}_{Y}$ in $DF(\mathcal{D}_{S})$, such that $DR_{s}(\int_{f} \mathcal{O}_{Y}) \simeq Rf_{*}C_{Y}$ in $D_{c}^{b}(C_{S})$ (cf. [1], [4]).

(1.1) Theorem. 1) We have the isomorphisms

(1.1.1)
$$\int_{f} \mathcal{O}_{Y} \simeq \sum_{k} \int_{f}^{k} \mathcal{O}_{Y}[-k] \quad in \ DF(\mathcal{D}_{S})$$

and

(1.1.2) $\int_{f}^{k} \mathcal{O}_{Y} \simeq \mathcal{H}_{X}^{0}\left(\int_{f}^{k} \mathcal{O}_{Y}\right) \oplus \left(\int_{f}^{k} \mathcal{O}_{Y}|_{S^{*}}\right) \quad \text{for any } k \in \mathbb{Z},$ as filtered \mathcal{D}_{S} -Modules. Here,

$$\int_{f}^{k} \mathcal{O}_{Y} = \mathcal{H}^{k} \left(\int_{f} \mathcal{O}_{Y} \right),$$

 $\Sigma = S - S^*$ is the set of the critical values of f and " \mathcal{M} is the minimal extension of a regular holonomic system \mathcal{M} on S^* (i.e., $\mathcal{H}_{\Sigma}^{\circ}({}^*\mathcal{M}) = \mathcal{H}_{\Sigma}^{\circ}({}^*\mathcal{M}^*) = 0$ and " $\mathcal{M}|_{s^*} \simeq \mathcal{M}$).

2) Let L be a relatively ample line bundle on Y and let us also denote by L the operator defined by the cup product of $c_1(L)$. Then we have the isomorphisms for any $k \in \mathbb{Z}_+$

(1.1.3)
$$L^k: \int_f^{n-k} \mathcal{O}_Y \cong \int_f^{n+k} \mathcal{O}_Y \{k\},$$

and

(1.1.4)
$$\int_{f}^{n-k} \mathcal{O}_{Y} \simeq \left(\int_{f}^{n+k} \mathcal{O}_{Y}\right)^{*} \{-n\},$$