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1. Introduction. Let K(x, y) be a kernel satisfying K(x,
=Const./Ix-yl or any pair (x, y) of real numbers with xy. We

that K(x, y) is of type 2 if Kf(x)--lim,o K(x,say y)f(y)dy

exists almost everywhere for any f e L and K Il. sup {llgfll./llfll
f e L} oo, where L denotes the space of square integrable unctions

f(x) on the real line with norm llfll.--- [f(x)12dx For the har-

monic analysis on curves, A. Calderhn investigated kernels C[](x, y)
=l/{(x-y)+i(O(x)-O(y))} for real-valued functions (x) and, in [2],
he showed that C[] is of type 2 as long as II’ll=ess. sup I’(x) is
sufficiently small. Using this theorem he also. studied kernels

(1) C[h,](x,y)- 1 h{(x)--(Y)}x-y x-y
for complex-valued functions h(t) and real-valued functions (x). In
[5], R. Coifman-A. McIntosh-Y. Meyer showed that C[0] is of type 2
if II0’[[<oo. Using this theorem, R. Coifman-G. David-Y. Meyer
showed, in [4], the following

Theorem. If h(t) is infinitely differentiable, then C[h, ] is of
type 2 as long as []’ ]] < oo.

The purpose of this paper is to give a new proof of this theorem.
We shall deduce this theorem rom Calder6n’s theorem and so-called
"good 2 inequalities". The author expresses his thanks to.. Prof. A.
Uchiyama, through whose notebook the author learned recent
Calder6n’s lecture on C[].

2. Proof of Theorem. Without loss of generality we may

that h(t) has a compact support. Let /()= e-h(t)dt.assume
d-

Then we have formally

( 2 ) C[h, ](x, y)-- Const. ]()C[d’, ](x, y)d,
d-

and hence it is natural to investigate kernels K[]--C[d’, ] for real-

valued functions q(x). For a locally integrable function f(x), we put


