97. On v-Ideals in a VHC Order*)

By Hidetoshi MARUBAYASHI College of General Education, Osaka University (Communicated by Shokichi IYANAGA, M. J. A., Sept. 12, 1983)

Throughout this note, Q will be a simple artinian ring and R will be an order in Q with 1. Let $\underline{C}(\underline{C'})$ be a right (left) Gabriel topology on R cogenerated by the right (left) injective hull of Q/R. In [4], Ris called a VH (v-hereditary) order if for any R-ideal A such that $_vA$ = A ($A_v = A$) we have $_v(A(R:A)_t) = O_t(A)$ (resp. $((R:A)_rA)_v = O_r(A)$). We say that R is a VHC order if it is a VH order satisfying the maximum condition on \underline{C} -closed right ideals and $\underline{C'}$ -closed left ideals. The concept of VHC orders is a Krull type generalization of HNP (hereditary noetherian prime) rings. The aim of this note is to extend Robson's theorems and Fujita-Nishida's theorems in HNP rings to the case of VHC orders (cf. [1], [7] and [3]). Concerning our terminology and notations we refer to [4]. See [6] for many interesting examples of VHC orders.

Proposition 1. The following two conditions are equivalent:

(1) $_{v}(A(R:A)_{i})=O_{i}(A)$ for any R-ideal A such that $_{v}A=A$.

(2) $_{v}(A(R:A)_{i}) = _{v}(O_{i}(A))$ for any *R*-ideal A.

Proof. (2)⇒(1) is clear, because $_v(O_i(A)) = O_i(A)$ for any *R*-ideal *A* with $_vA = A$. (1)⇒(2): Since $_vA \supset A$, we have $1 \in O_i(_vA) = _v(_vA(R: _vA)_i)$ $\subset_v(_vA(R:A)_i) = _v(A(R:A)_i)$ by Lemma 1.1 of [4]. It is clear that $A(R:A)_i \subset O_i(A)$ and so $_v(A(R:A)_i) \subset _v(O_i(A))$. On the other hand, $A(R:A)_i$ is an $(O_i(A), O_i(A))$ -bimodule and thus $_v(A(R:A)_i)$ is a right $O_i(A)$ -module. Hence it follows that $O_i(A) \subset _v(A(R:A)_i)$ and that $_v(O_i(A)) \subset _v(A(R:A)_i)$.

From now on, R will be a VHC order in a simple artinian ring Q. Lemma 1. Let A be any R-ideal. Then ${}_{v}A = A_{v}$.

Proof. This is proved as in Lemma 1.2 of [4] by using Proposition 1.

We consider the following sets of v-ideals of $R: V(R) = \{A : \text{ideal of } R \mid A : v \text{-ideal}\} \supset V_m(R) = \{A \in V(R) \mid A \subset P : \text{ prime } v \text{-ideal} \Rightarrow P : \text{maximal } v \text{-ideal}\}$. If R has enough v-invertible ideals, then $V(R) = V_m(R)$ by Lemma 1.2 of [5]. We do not have an example of VHC order in which $V(R) \supseteq V_m(R)$ up to now. We study the properties of ideals belonging to $V_m(R)$.

^{*)} Dedicated to Prof. Kentaro Murata for his 60th birthday.