96. Some Dirichlet Series with Coefficients Related to Periods of Automorphic Eigenforms. II^{*)}

By Dennis A. HEJHAL

Department of Mathematics, University of Minnesota

(Communicated by Shokichi IYANAGA, M. J. A., Sept. 12, 1983)

§6. This paper is a direct continuation of [2]. Our primary objective here is to begin a discussion of several applications of the general formalism considered in §§ 2-5.

§ 7. We start by deriving some estimates for $F_{\mu}(\xi; S^{\pm 1})$. Cf. Theorem 2. The basic procedure is that of analytic number theory. By examining *appropriate* combinations of the Mellin transforms mentioned in [2, p. 416 (line 5)] and applying (4.1), we quickly establish that

(7.1) $|F_{u}(\xi; S^{\pm 1})| = O(1)e^{(\pi/2 + \delta)|t|}$

for $\xi = \sigma + it$, $|\sigma| \leq N$, $|t| \geq 1$, $\delta > 0$. The implied constant may depend on N, ϕ , δ . Compare [6, pp. 311, 313] and [15, p. 22 (line 12)]. We (can) now combine a Phragmén-Lindelöf argument with (4.1) and theorem 2(v). Cf. [5, p. 95]. This yields:

Theorem 3. Given $0 \le \epsilon \le 1/100$ and $N \ge 3$. Then:

$$F_{\mu}(\xi; S^{\pm 1}) = O\left[\frac{1}{\varepsilon} |t|^{\max(0,3/2 - 2\sigma,3/2 + \varepsilon - \sigma)}\right]$$

for $\xi = \sigma + it$, $|\sigma| \leq N$, $|t| \geq 1$. The implied constant depends solely on (Γ, N, S, ϕ) .

§8. Take $T \ge 2x \ge 2000$ and consider the integral

$$\frac{1}{2\pi i}\int_{\partial R}F_{\mu}(\xi;S)\frac{(2\pi x)^{\ell+1}}{\xi(\xi+1)}d\xi \qquad \text{for }\mu\!=\!a,\,b$$

with $R = [-\varepsilon, 3/2 + \varepsilon] \times [-T, T]$. Cf. [5, p. 31]. The "horizontal" contribution is easily estimated using Theorem 3. The contribution from $\{\sigma = -\varepsilon\}$ is then handled using Theorem 2(v) and [15, p. 62 middle]. A typical *component* here reduces to

$$\int_{1000}^{T} G(t) e^{iF(t)} dt$$

with $G(t) = t^{2\epsilon-1/2}$ and $F(t) = -2t \ln t + 2t + t \ln [\pi^2 x | S^{-1}[m_0] |]$. The result in [15] is applied to $[T2^{-k-1}, T2^{-k}]$ for $k \leq \log_2 T$. Each interval of this type splits into O(1) "admissible" subintervals. We conclude that:

$$\frac{1}{2\pi i}\int_{-\epsilon-iT}^{-\epsilon+iT}F_{\mu}(\xi;S)\frac{(2\pi x)^{\xi+1}}{\xi(\xi+1)}d\xi=O\bigg[\frac{x^{1-\epsilon}}{\varepsilon}T^{2\epsilon}\ln T\bigg].$$

^{*)} Supported in part by NSF Grant MCS 78-27377.