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95. On Approximation by Integral Miintz Polynomials
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In 1914 there appeared two independent articles of importance on
Weierstrass’ approximation theorem. Kakeya [6] considered approxi-
mation of a given continuous function f(x) on [a, b] by polynomials
with integral coefficients, while Mfintz [7] studied the condition on the
sequence A={} (0=02" n) to approximate f(x) by the
"Mfintz polynomials"

( 1 ) p(x)= ax,
k=O

where the coefficients a’s are real.
Kakeya proved that on [0, 1] f(x) is uniformly approximated by

integral polynomials iff f(0) and f(1) are both integers, and showed
that if a4, f(x) cannot be uniformly approximatefl on [0, a] by
integral polynomials unless it is such a polynomial.

The necessary and sufficient condition found by Mfintz was

(2) 1 n
which is now usually called "Mfintz condition". Their aspects and
results have been both unified and extended recently (cf. Ferguson [2]
for basic results). One of the fundamental problems is to find condi-
tions to approximate f(x) on [0, a] by integral Mfintz polynomials, i.e.
p(x) with integer coefficients a’s.

If we denote by C0[0, a] the set of all continuous functions f(x)on
[0, a] such that f(m) is integer for any integer m in [0, a], then
Ferguson and Golitschek [3] proved that when A is a sequence of
positive integers and ag 1, (2) is the necessary and sufficient condition
for f e C0[0, a] being uniformly approximated by integral Mfintz
polynomials ([2], Chap. 8). Later Golitschek [4] has succeeded in
proving this true for any 2 . Also Ferguson [1] showed, among
other things, that the assertion becomes false if a 1.

Now define for the increasing sequence A of positive numbers,

D(A)=lim inf N D(A) lira sup N

which are called respectively the lower and the upper asymptotic
densities of A. If (A)=D(A), we denote it by


