86. Free Arrangements of Hyperplanes over an Arbitrary Field^{*)}

By Hiroaki TERAO

Department of Mathematics, International Christian University

(Communicated by Kunihiko KODAIRA, M. J. A., Sept. 12, 1983)

In [6], we proved a factorization theorem for the Poincaré polynomial of the complement of hyperplanes in an *l*-dimensional vector space over the complex number field C when the arrangement of the hyperplanes is free. That was called Shephard-Todd-Brieskorn theorem there. Our main aim here is to report a generalized factorization theorem for a free arrangement over an arbitrary field. The detailed proof will appear in [3].

1. Let A be an arrangement in an *l*-dimensional vector space V over a field K. In other words, A is a finite family of (l-1)-dimensional vector subspaces of V. Denote the dual vector space of V by V^* . Let $S = S(V^*)$ be the symmetric algebra of V^* . Fix a base $\{x_1, \dots, x_l\}$ for V^* , and S is isomorphic to the polynomial algebra $K[x_1, \dots, x_l]$. Let $Q \in S$ be a reduced defining equation for $\bigcup_{H \in A} H$. Then Q is a product of elements of V^* . The derivation of S is a K-linear map $\theta: S \to S$ satisfying $\theta|_{\kappa} \equiv 0$ and $\theta(fg) = f\theta(g) + g\theta(f)$ for any $f, g \in S$.

Definition 1. A derivation along A (which is called a logarithmic vector field [4] when we are in the complex analytic category) is a derivation θ of S satisfying

$\theta(Q) \in QS.$

Let D(A) denote the set of derivations along A. Then D(A) is naturally an S-module.

Definition 2. If D(A) is an S-free module, we say that A is a free arrangement.

Definition 3. A derivation θ of S is said to be homogeneous of degree b if $\theta(x_i) \in S_b$ $(i=1, \dots, l)$, where S_b is the vector subspace of S generated by monomials of degree b. We write $b = \deg \theta$. We can show that D(A) has a free base $\{\theta_1, \dots, \theta_l\}$ consisting of homogeneous derivations if A is a free arrangement. The integers $(\deg \theta_1, \dots, \deg \theta_l)$ are called *the degree* of A (called the generalized exponents of A in [6]). They depend only upon A.

The following useful criterion, proved by K. Saito [4] when K=C, remains true for arbitrary K:

^{*&#}x27; Partially supported by JMS research fellowship.