84. S¹ Actions with Only Isolated Fixed Points on Almost Complex Manifolds

By Akio HATTORI

Department of Mathematics, University of Tokyo (Communicated by Kunihiko KODAIRA, M. J. A., Sept. 12, 1983)

1. The purpose of this note is to announce some results on S^1 actions having only isolated fixed points on an almost complex manifold admitting a quasi-ample complex line bundle. Details will appear elsewhere.

Let M be an oriented, connected, closed C^{∞} manifold on which a smooth action of S^1 is given such that its fixed points are all isolated. Then the fixed point set consists of exactly χ points $\{P_i\}$ where χ denotes the Euler number of M. Let E be a complex line bundle over M such that the given S^1 action can be lifted to an action on the line bundle E. We call such a line bundle admissible. If E is an admissible line bundle, then we fix a lifting of the action on E and consider the fiber E_{P_i} of E over a fixed point P_i . E_{P_i} is a complex S^1 -module so that it can be written in the form

(1.1)

$$E_{P_i} = t^{a_i}$$

where t denotes the standard 1 dimensional S^{i} -module. The integer a_{i} will be called the weight of E at P_{i} . We note that if we choose another lifting of action then the weights a_{i} are changed simultaneously to $a_{i}+a$ for some a. An admissible line bundle over an even dimensional manifold M will be called quasi-ample if the weights a_{i} are all different and

$$(c_1(E))^n[M] \neq 0$$
, dim $M = 2n$,

where $c_i(E)$ denotes the first Chern class of E.

Now we assume that M is an almost complex manifold and the action of S^1 preserves the almost complex structure. Such a manifold will be called almost complex S^1 -manifold. Then, restricting the complex tangent bundle TM to each fixed point P_i , we get an S^1 -module $TM \mid P_i = \sum t^{m_{ik}}$

$$TM | P_i = \sum_k t^m$$

where the m_{ik} are non-zero integers. These integers m_{ik} are called weights of M at P_i . Later we shall consider the following condition (D) relating a quasi-ample line bundle E and the tangent bundle:

(D) There exist integers $k_0 \ge 0$ and d such that the identity

$$\sum_{k} m_{ik} = k_0 a_i + d$$

holds for all i.