75. On Certain Cubic Fields. III

By Mutsuo WATABE

Department of Mathematics, Keio University

(Communicated by Shokichi IYANAGA, M. J. A., June 14, 1983)

1. The notations E_F , E_F^+ , \mathcal{O}_F for an algebraic number field F, D_g for a polynomial $g(x) \in \mathbb{Z}[x]$ and $D(\theta)$ for an algebraic number θ have the same meanings as in [1]. For a totally real cubic field K, we also use the notations $\mathcal{A}(K)$, $\mathcal{B}_{\epsilon}(K)$ and $S: K \to R$ as in [1].

The purpose of this note is to show the following theorem :

Theorem. Let $K = Q(\delta)$, where $\operatorname{Irr}(\delta: Q) = g(x) = x^3 - nx^2 - (n+1)x$ -1, $n \in \mathbb{Z}$ but $n \neq 0, \pm 1, \pm 2, \pm 3, \pm 4, \pm 5, -6$. If $D_g = (n^2 + n - 3)^2$ -32 is square free, then we have $\delta \in \mathcal{A}(K)$, $\delta + 1 \in \mathcal{B}_{\delta}(K)$ and $E_K^+ = \langle \delta, \delta + 1 \rangle$.

Remark 1. We may limit our consideration to the case $n \le -7$ for the following reason. Put $G(n, x) = x^3 - nx^2 - (n+1)x - 1$ and m = -(n+1). Then we have $-(1/x^3)G(n, x) = G(m, 1/x)$ and if $n \ge 6$, we have $m \le -7$. Thus if $\operatorname{Irr}(\delta: \mathbf{Q}) = G(n, x)$ with $n \ge 6$, then $\operatorname{Irr}(1/\delta: \mathbf{Q}) = G(m, x)$ with $m \le -7$. Thus we suppose $n \le -7$ in the sequel.

Remark 2. K/Q is cubic because of the irreducibility of g(x), and it is totally real in virtue of $D_g = (n^2 + n - 3)^2 - 32 > 0$. It is easy to verify that $(n^2 + n - 3)^2 - 32$ can not be a square. Thus K/Q is non Galois.

2. Proof of Theorem. First we shall show $\delta \in \mathcal{A}(K)$, $\delta+1 \in \mathcal{B}_{\delta}(K)$. It is clear that δ , $\delta+1 \in E_{K}^{+}$. As $K = Q(\delta)$, $D_{g} \neq 0$ and D_{g} is square free, we have $D_{g} = D(\delta)$ and consequently we have $\mathcal{O}_{K} = Z + Z\delta + Z\delta^{2}$. Any unit $v \neq 1$ in E_{K}^{+} can be written as $v = a + b\delta + c\delta^{2}$, where $a, b, c \in Z$ and $(b, c) \neq (0, 0)$. This yields, in denoting the conjugates of δ by α , β , $\tilde{\gamma}$,

$$\begin{split} S(v) = & \frac{1}{2} \{ b^2 (\alpha - \beta)^2 + c^2 (\alpha^2 - \beta^2)^2 + 2bc(\alpha - \beta) (\alpha^2 - \beta^2) \\ & + b^2 (\beta - \gamma)^2 + c^2 (\beta^2 - \gamma^2)^2 + 2bc(\beta - \gamma) (\beta^2 - \gamma^2) \\ & + b^2 (\gamma - \alpha)^2 + c^2 (\gamma^2 - \alpha^2)^2 + 2bc(\gamma - \alpha) (\gamma^2 - \alpha^2) \}. \end{split}$$

Using Proposition 4 in [1], we have $S(\delta) = n^2 + 3n + 3 > 0$ and S(v) = P + Q + R, where

$$\begin{split} P &= \frac{1}{2} b^2 \{ (\alpha - \beta)^2 + (\beta - \tilde{\tau})^2 + (\tilde{\tau} - \alpha)^2 \} = b^2 S(\delta), \\ Q &= \frac{1}{2} c^2 \{ (\alpha^2 - \beta^2)^2 + (\beta^2 - \tilde{\tau}^2)^2 + (\tilde{\tau}^2 - \alpha^2)^2 \} = c^2 (n^4 + 4n^3 + 5n^2 + 8n + 1) \\ &= c^2 S(\delta) + (n^4 + 4n^3 + 5n - 2) c^2 = (n^2 + n + 1) c^2 S(\delta) + (-2n^2 + 2n - 2) c^2 \} \end{split}$$