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1. The notations Er, E, for an algebraic number field F, D
for a polynomial g(x)e Z[x] and D(8) for an algebraic number 0 have
the same meanings as in [1]. For a totally real cubic field K, we also
use the notations /(K), ,(K) and S" K-+R as in [1].

The purpose of this note is to show the following theorem"
Theorem. Let K=Q(), where Irr(" Q)=g(x)=x-nx2-(n+ l)x

--1, ne Z but n#O, +_1, +2, +3, ++_4, +_5, -6. If D=(n2+n-3y
-32 is square free, then we have e(K), +le_(K) and E

Remark 1. We may limit ou consideration to the ease
for the following reason. Put G(n, x)=x-nx-(n+l)x-1 and m
=-(n+ 1). Then we have -(1/x)G(n, x)=G(m, 1/x) and if n_>_6, we
have m< -7. Thus if Irr (" Q) G(n, x) with n>=6, then Irr (1/" Q)

G(m, x) with m_<_ 7. Thus we suppose n=< 7 in the sequel.
Remark 2. K/Q is cubic because of the irreducibility of g(x),

and it is totally real in virtue of D- (n+n-3)-320. It is easy
to verify that (n+n-3y-32 can not be a square. Thus K/Q is non
Galois.

2. Proof of Theorem. First we shall show e(K), +1
e .(K). It is clear that , 3+1 e E. As K=Q(3), D:0 and D is
square free, we have D=D() and consequently we have
+Z/. Any unit v4:1 in E can be written as v=a+b+c, where
a, b, c e Z and (b, c)4:(0, 0). This yields, in denoting the conjugates
of o by , fl, ’,

1S(v) -{b(c fl)2 + c2(a_ fl)+2bc(a-- fl) (--

+ b(fl-- ’)+ c(fl-?’) +2bc(fl-- ?3 (fl-- ’)
+ b0"-- a) + c(" c) +2bc0"-- a)

Using Proposition 4 in [1], we have S(cT)=n+3n/3O and
S(v) P+Q+R, where

p=1b{(c_ fl)+ (fl_ ,)+ (r_c0}
2

Q -c{(- +(- + (r-)} c(n +4n + 5n + 8n+ 1)

cS(,) + (n + 4n +5n-2)c= (n +n+ 1)cS(3) + (-2n +2n-2),


