72. G-Vector Bundles and F-Projective Modules^{*)}

By Katsuo KAWAKUBO Osaka University

(Communicated by Kunihiko KODAIRA, M. J. A., June 14, 1983)

§1. Introduction. Swan has shown that there is a one to one correspondence between vector bundles over a compact Hausdorff space X and finitely generated projective modules over the ring of continuous real-valued functions on X [7].

In the present paper, we will consider an equivariant version of this. Let G be a compact topological group. Then a notion of G-vector bundles is already defined [1]. On the other hand, we introduce notions of equivariant modules, of a family F of equivariant modules and of F-projective modules so that we have an equivariant Swan theorem.

For each family F, we define two kinds of equivariant algebraic K-theories associated with F. Taking a suitable family F, we have an isomorphism of an equivariant topological K-theory and our equivariant algebraic K-theory associated with F.

Equivariant algebraic K-theory is studied along the line of Quillen [6] by Fiedorowicz, Hauschild and May [4], while our approach is along the line of the classical algebraic K-theory [5]. The reason will clear up in a subsequent paper. Namely we will show that our equivariant algebraic K-theory is a Mackey functor [3]. Accordingly the Dress induction theorem [2] is applicable. Using our equivariant Swan theorem, we will show that Brauer and Artin type induction theorems hold in equivariant topological K-theories $KO_g(X)$ and $K_g(X)$. Accordingly equivariant topological K-theories are characterized by the hyperelementary subgroups.

§2. Families and equivariant algebraic K-theory. The word ring will always mean associative ring with an identity element 1. Let G be a group. A G-ring is a ring Λ together with a G-action on Λ preserving the ring structure. If Λ is a G-ring, a Λ G-module is a module M over Λ together with a G-action on M such that

(*) $g(\lambda_1 m_1 + \lambda_2 m_2) = (g\lambda_1)(gm_1) + (g\lambda_2)(gm_2)$

for any $g \in G$, $\lambda_i \in \Lambda$, $m_i \in M$.

A collection F of finitely generated ΛG -modules is called a *family* if the following holds;

^{*)} Dedicated to Prof. Minoru Nakaoka on his sixtieth birthday. Research ε protted in part by Grant-in-Aid for Scientific Research.