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1o Introduction. In the previous paper [1] we extended the so-
called Montel-Bieberbach’s theorem on values omitted by meromorphic
and univalent functions in [zll, to the case of circumferentially
mean univalence (defined hereafter). In the next paper [2] we an-
nounced the results on meromorphic and circumferentially mean
univalent functions in an annulus which mean an extension of the
author’s results [1]. In this paper, we shall first extend GrStzsch’s
theorem ([3] or [5]) to the case of circumferentially mean univalence
and then prov.e the author’s results [2] in the precise and intrinsic
form.

We shall define circumferentially mean univalent functions in a
domain D. Let f(z) be regular or meromorphic in D and n(R,
denote the number of roots of the equation f(z)-w--Re. We define
p(R) as follows.

1 n(R )dq (0<R< oo).P(R) --zIf p(R)<_l (0_<R<oo), f(z) is called "circumferentially mean uni-
valent".

2. We shall first state the following two lemmas.
Lemma 1. Let w=f() be single-valued, regular in

and [f(z)l_l there. Moreover let the circle Iz]=l be univalently
mpped onto the circle w]=l. If we denote the harmonic measure

of the circle [z]=l with respect to the annulus l[zlR by o(z) and
do the harmonic measure of Iwl-1 with respect to the image domain
Dr under w=f(z) by w(w), then we have
( 1 I (o(z))

_
I(o(w)),

where I((o(z)) or I((o(w)) denote the Dirichlet integral of o(z) or
respectively.

Proof. We may consider Landau-Osserman’s results [6] by
means of exhaustion method.

Lemma 2. Let f(z) satisfy the same conditions as in Lemma 1
and D, or o(w) denote the same notation in Lemma 1 respectively.

If D denotes the circularly symmetrized domain of D with respect to


