67. Note on the Wiener Compactification and the H^p-Space of Harmonic Functions

By Hiroshi TANAKA*) and Joel L. SCHIFF**)

(Communicated by Kôsaku YOSIDA, M. J. A., June 14, 1983)

Introduction. Let R be a hyperbolic Riemann surface. We denote by HB(R) (resp. HB'(R)) the class of all bounded harmonic (resp. quasibounded harmonic) functions on R. For p $(1 , we denote by <math>H^p(R)$ the class of all harmonic functions u on R such that $|u|^p$ has a harmonic majorant. Then Naim [1] obtained in terms of the Martin boundary that $HB(R) \subset H^p(R) \subset HB'(R)$ for all p. On the other hand the second author [3] proved in terms of Wiener boundary that dim $HB(R) < \infty$ implies $HB(R) = H^p(R)$ for all p. In this note we shall prove that if any two classes of HB(R), $H^p(R)$ and HB'(R) coincide, then we necessarily have dim $HB(R) < \infty$. Thus we obtain that dim $HB(R) < \infty$ if and only if $HB(R) = H^p(R)$ for some p and hence for all p. The first author wishes to express his thanks to Prof. A. Yoshikawa for valuable discussions on L^p -spaces.

1. The H^p -space of harmonic functions. Let R be a hyperbolic Riemann surface and let z_0 be a fixed point in R once for all. Let $\{R_n\}_{n=1}^{\infty}$ be a regular exhaustion of R such that z_0 is contained in all R_n 's. We denote by $\mu_n = \mu_{z_0}^{R_n}$ the harmonic measure on the boundary ∂R_n . Note that $\int_{\partial R_n} d\mu_n = 1$ for all n.

Definition. A harmonic function u on R belongs to $H^p(R)$, $1 \le p < \infty$, if and only if the *p*-mean values

$$\|u\|_{p,n} = \left(\int_{\partial R_n} |u|^p d\mu_n\right)^{1/p}$$

are uniformly bounded in *n*. Set $H^{\infty}(R) = HB(R)$, the space of all bounded harmonic functions on *R*.

Theorem 1 (Naim [1]). (i) $u \in H^p(R)$, $1 \leq p < \infty$, if and only if $|u|^p$ has a harmonic majorant.

(ii) $HB(R) \subset H^p(R) \subset HB'(R), 1 .$

2. Lemma on L^p -space. Let X be a compact Hausdorff space and μ be a positive (Radon) measure on X. We denote by $S\mu$ the support of μ . We note that $x \in X$ belongs to $S\mu$ if and only if $\mu(V) > 0$ for any open neighborhood V of x. We denote by $L^p = L^p(X, \mu)$ the

^{*)} Department of Mathematics, Joetsu University of Education, Joetsu.

^{**)} Department of Mathematics, University of Auckland, Auckland, New Zealand.