By Hiroshi Ito

Department of Mathematics, Nagoya University

(Communicated by Shokichi IYANAGA, M. J. A., May 12, 1983)

Let K be an imaginary quadratic field embedded in the complex number field C, and let $f \neq (1)$ be an integral ideal of K. For each element C of the ray class group $Cl(\mathfrak{f})$ modulo \mathfrak{f} the ray class invariant $\phi_{\rm f}(C)$ is introduced by Siegel and Ramachandra (cf. Robert [5] and Stark [7]). The definition will be explained in the text. Let H(f) be the ray class field modulo f and f the smallest positive integer contained in f. Then it is known that $(\phi_i(C)/\phi_i(C'))^{e(H(\mathfrak{f}))/e(K)}$ $(C, C' \in \mathcal{Cl}(\mathfrak{f}))$ is the (12f)-th power of a unit of $H(\mathfrak{f})$ (Gillard and Robert [1]). Here $e(H(\mathfrak{f}))$ and e(K) are the numbers of roots of unity contained in $H(\mathfrak{f})$ and K respectively. In this paper we describe a (12f)-th root of $(\phi_{\mathfrak{f}}(C)/\phi_{\mathfrak{f}}(C'))^{e(H(\mathfrak{f}))/e(K)}$ contained in $H(\mathfrak{f})$ explicitly by special values of the Siegel functions and determine the behavior under Artin auto-The result is then useful to calculate class numbers of morphisms. abelian extensions of K by the method of Gras and Gras [2].

§ 1. Preliminaries. Let $f \neq (1)$ be an integral ideal of K. The ideal f is uniquely decomposed into two factors f_a , f_b as follows:

$$f = f_a f_b, \quad f_a = \overline{f}_a, \quad (\overline{f}_b, \overline{f}_b) = 1.$$

Here the bar indicates the complex conjugation. Take an integral basis $\{\omega, 1\}$ (Im $(\omega) > 0$) of the ring \circ of integers of K. We fix such an ω throughout this paper. The next lemma is fundamental in the formulation and the proof of our results.

Lemma. Let f_b be the smallest positive integer contained in f_b . Then there exists a rational integer a satisfying the following condition: For an arbitrary element x of f_b the congruence

$$a \operatorname{tr} (x) \equiv \operatorname{Im} (x) / \operatorname{Im} (\omega) \mod f_b$$

holds, where $tr(\cdot)$ is the trace map from K to the rational number field Q.

We fix such an integer a. For an algebraic number field H of finite degree denote by e(H) the number of roots of unity contained in H. Put $\delta = e(H(1))/e(K)$, where H(1) is the Hilbert class field of K. The integer δ is a divisor of 6. We consider the following condition (#) concerning an ideal (not necessarily integral) α of K:

(#) a is prime to 6f and $N(a) \equiv 1 \mod (12/\delta)$.

Here N(a) is the absolute norm of a and the congruence is considered