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Let M be a complex manifold and let H be a divisor on M. Denote
by 9(*H) the sheaf over M of germs of meromorphic p-forms which
are holomorphic in M-H and have poles on H for p=0, ..., n. In
case t0=0, we use frequently (*H) instead of 9(*H).

We suppose throughout this paper that the divisor H has at most
normal crossings.

Let 3 be a locally free sheaf of )(*H)-modules of rank m and let
17 be an integrable connection on . For any point p e H, there exists
an open set U in M containing p and a free basis e=(ev, ..., ev) of
q over U. With respect to the free basis e, the connection /7 is
represented by (d+2), i.e.

/7((e1, ..., e}u)= (el, ..., e}(du+ 12euu),
where 9 is an m-by-m matrix of meromorphic 1-forms with poles at
most on H and u is any m-vector of functions in ((*H)(U). If f
-(f,...,fv} is another free basis of over U, then there exists
an m-by-m invertible matrix G of functions in ((*H)(U) such that

(f, ..., fu (e, ..., e}G,
g((fv, ..., fv}u) (fv, ..., fv}(du+ (G-{[2evG+ dV})u).

Let x, ..., x be holomorphic local coordinates at p on U with U ( H
={x... Xn-=0}, then 9 is written of the form

9 i=1" x-’xIAi(x)dx+=,,+ x-’A(x)dx,
where p=(p,, ..., Pn", O, ", O)e N and A(x) is an m-by-m matrix
of holomorphic functions in U for i- 1, ., n, and 9 satisfies, by the
integra.bility condition, dtOv+9vAgv=0.

Suppose that for any point p on H
(H) there exists an open set U containing p with holomorphic

coordinates x,..., x and a free basis (e,..., e} of such that

2 is written of the above form satisfying
(HI) p--0 or, pO and A(O) has m distinct eigenvalues for

all i-- 1, ., n".
Let M- be the real blow-up along H of M with the natural projec-

tion pr’M-oM. Denote by - the sheaf over M- of germs of
functions strongly asymptotically developable and write -(*H) for
-(R).opr*((*H). Denote by GL(m,-) and GL(m,.-(*H)) the


