55. The Exponential Calculus of Microdifferential Operators of Infinite Order. IV

By Takashi Aoki

Department of Mathematics, Kinki University

(Communicated by Kôsaku YOSIDA, M. J. A., May 12, 1983)

1. Introduction. In this note we show that there is a formal symbol q of order at most 1-0 (see [1], [2] for the notation) satisfying (1.1) exp: $p := : \exp q :$.

Here p is a formal symbol of order at most 1-0. That is, the exponential of an operator has an exponential symbol. Such q can be calculated from p.

2. Exponential of operators. Let X be an open set in \mathbb{C}^n with coordinates $x = (x_1, \dots, x_n)$, Ω a conic open set in $T^*X \simeq X \times \mathbb{C}^n_{\xi}$. Let $p(t; x, \xi)$ be a formal symbol of order at most 1-0 defined in Ω . We shall consider the operator exp $(s: p(t; x, \xi):)$ $(s \in \mathbb{C})$. Let us define a sequence $\{p^{(k)}(t; x, \xi)\}$ $(k=0, 1, 2, \dots)$ of formal symbols by

(2.1)
$$p^{(0)}(t; x, \xi) = 1,$$

(2.2) $p^{(k+1)}(t; x, \xi) = \exp(t\partial_{\xi} \cdot \partial_{y})p(t; x, \xi)p^{(k)}(t; y, \eta)|_{\eta=\xi}^{y=x}.$

Here $k=0, 1, 2, \cdots$. Then we set

(2.3)
$$P(t; s, x, \xi) = \sum_{k=0}^{\infty} \frac{s^k}{k!} p^{(k)}(t; x, \xi).$$

Here $s \in C$. By the definition we have $: p^{(k)}(t; x, \xi) := (:p(t; x, \xi):)^k$. Therefore $P(t; s, x, \xi)$ formally satisfies the following differential equation:

(2.4) $\partial_s P(t; s, x, \xi) = \exp(t\partial_{\xi} \cdot \partial_y) p(t; x, \xi) P(t; s, y, \eta)|_{\eta = \xi}^{y=x},$ (2.5) $P(t; 0, x, \xi) = 1.$

Moreover we have

Proposition 1. For every $s \in C$ the formal power series $P(t; s, x, \xi)$ in t is a formal symbol defined in Ω .

Hence $P(t; s, x, \xi)$ defines an operator $: P(t; s, x, \xi)$: which satisfies (2.6) $\partial_s : P(t; s, x, \xi) := : p(t; x, \xi) :: P(t; s, x, \xi) :,$ (2.7) $: P(t; 0, x, \xi) := 1.$ Therefore exp $(s : p(t; x, \xi) :)$ makes sense, which is defined by

(2.8) $\exp(s: p(t; x, \xi):) = : P(t; s, x, \xi):.$

3. Statement of the results. Let Ω be a conic open set in T^*X , $p(t; x, \xi) = \sum_{j=0}^{\infty} t^j p_j(x, \xi)$ a formal symbol of order at most 1-0 defined in Ω . Let us define two sequences of symbols $\{\psi_{i,k}^{(j)}(x, y, \xi, \eta)\}$ and $\{q_k^{(j)}(x, \xi)\}$ defined respectively in $\Omega \times \Omega$ and in Ω by the following recursion formulae: