6. Global Solutions of the Nonlinear Schrödinger Equation in Exterior Domains

By Yoshio TSUTSUMI*)

(Communicated by Kôsaku Yosida, M. J. A., Jan. 12, 1983)

§ 1. Introduction and theorem. We consider the following initial boundary value problem for the nonlinear Schrödinger equation in an exterior domain $\Omega \subset \mathbb{R}^n$, $n \geq 3$:

(1.1)
$$i\frac{\partial u}{\partial t} = \Delta u + \lambda |u|^p u \quad \text{in } [0, \infty) \times \Omega$$

(1.2)
$$u(0, x) = u_0(x),$$

$$(1.3) u|_{\partial \Omega} = 0.$$

Here λ is a real constant and p is an even integer with $p \ge 2$. The domain Ω is the exterior of a compact set in \mathbb{R}^n , $n \ge 3$, with the smooth boundary $\partial \Omega$. In the present paper we shall prove that Problem (1.1)–(1.3) has a unique global solution for small initial data under a certain assumption on the shape of Ω , which indicates that Ω is "non-trapping" in the sense of Vainberg [2] and Rauch [3].

For the Cauchy problem, namely the case of $\Omega = \mathbb{R}^n$, the above problem has been extensively studied. For the exterior problem, however, we know only the work of Brézis and Gallouet [1]. In [1] they treated Problem (1.1)–(1.3) only for the case of n=2.

We shall first give some notations. For an open set D in \mathbb{R}^n , let $H^m(D)$, $H_0^m(D)$, $L^2(D)$, $L^1(D)$ and $C_0^{\infty}(D)$ denote the standard function spaces. We shall fix R > 0 such that $\partial \Omega \subset \{x \in \mathbb{R}^n ; |x| < R\}$. For any $r \ge R$, we denote the set $\{x \in \Omega ; |x| < r\}$ by Ω_r . We shall often abbreviate $\left(\frac{\partial}{\partial x}\right)^{\alpha}$ and $\left(\frac{\partial}{\partial t}\right)^j$ to ∂_x^{α} and ∂_t^j respectively, where α is a multiindex and j is a nonnegative integer. For $a \in \mathbb{R}^i$ we denote by [a] the

index and j is a nonnegative integer. For $a \in \mathbf{R}^1$ we denote by [a] the greatest integer that is not larger than a.

Let $G = G(t, x, x_0)$ be the Green function for the following problem:

$$\begin{array}{ll} (\partial^2/\partial t^2 - \Delta_x)G = 0 & \text{in } (0, \infty) \times \Omega, \\ \lim_{t \to +0} \frac{\partial^j G}{\partial t^j} = \begin{cases} 0, & j = 0, \\ \delta(x - x_0), & j = 1, \end{cases} \\ G|_{x \in \partial \Omega} = 0, \end{array}$$

where x_0 is an arbitrary point of Ω . For any $\psi(x) \in C_0^{\infty}(\mathbb{R}^n)$ we define $f(t, x, x_0)$ by

^{*)} Department of Pure and Applied Sciences, College of General Education, University of Tokyo, Komaba, Meguro, Tokyo 153, Japan.