6. Global Solutions of the Nonlinear Schrödinger Equation in Exterior Domains

By Yoshio Tsutsumi*

(Communicated by Kōsaku Yosida, M. J. A., Jan. 12, 1983)

§ 1. Introduction and theorem. We consider the following initial boundary value problem for the nonlinear Schrödinger equation in an exterior domain $\Omega \subset \mathbb{R}^n$, $n \geq 3$:

\begin{align}
 i \frac{\partial u}{\partial t} &= \Delta u + \lambda |u|^p u \quad \text{in } [0, \infty) \times \Omega, \\
 u(0, x) &= u_0(x), \\
 u|_{\partial \Omega} &= 0.
\end{align}

Here λ is a real constant and p is an even integer with $p \geq 2$. The domain Ω is the exterior of a compact set in \mathbb{R}^n, $n \geq 3$, with the smooth boundary $\partial \Omega$. In the present paper we shall prove that Problem (1.1)-(1.3) has a unique global solution for small initial data under a certain assumption on the shape of Ω, which indicates that Ω is "non-trapping" in the sense of Vainberg [2] and Rauch [3].

For the Cauchy problem, namely the case of $\Omega = \mathbb{R}^n$, the above problem has been extensively studied. For the exterior problem, however, we know only the work of Brézis and Gallouet [1]. In [1] they treated Problem (1.1)-(1.3) only for the case of $n = 2$.

We shall first give some notations. For an open set D in \mathbb{R}^n, let $H^s(D)$, $H^s_0(D)$, $L^q(D)$, $L^q_0(D)$ and $C^k(D)$ denote the standard function spaces. We shall fix $R > 0$ such that $\partial \Omega \subset \{x \in \mathbb{R}^n; |x| < R\}$. For any $r \geq R$, we denote the set $\{x \in \Omega; |x| < r\}$ by Ω_r. We shall often abbreviate $\left(\frac{\partial}{\partial x} \right)^\alpha$ and $\left(\frac{\partial}{\partial t} \right)^j$ to ∂_x^α and ∂_t^j respectively, where α is a multi-index and j is a nonnegative integer. For $a \in \mathbb{R}^n$ we denote by $[a]$ the greatest integer that is not larger than a.

Let $G = G(t, x, x_0)$ be the Green function for the following problem:

\begin{align}
 (\partial^2 / \partial t^2 - \Delta)G &= 0 \quad \text{in } (0, \infty) \times \Omega, \\
 \lim_{t \to +0} \frac{\partial^j G}{\partial t^j} &= \begin{cases}
 0, & j = 0, \\
 (\delta(x-x_0), & j = 1, \\
 G|_{x=x_0} &= 0,
\end{cases}
\end{align}

where x_0 is an arbitrary point of Ω. For any $\psi(x) \in C_0^\infty(\mathbb{R}^n)$ we define $f(t, x, x_0)$ by

\begin{align}
 f(t, x, x_0) = \int_{\Omega} \psi(x) G(t, x, x_0) \, dx.
\end{align}