No. 1]

4. The Order of Unstable Manifold of some Algebraic Plane Transformation

By Masaru MORINAKA

Department of Mathematics, Kyoto University

(Communicated by Kôsaku Yosida, M. J. A., Jan. 12, 1983)

We consider the transformation

(1)
$$f(x, y) = (y + cx(1-x), x), \quad c > 0$$

(See [1] and [2].)

The entire solution of the functional equation:

(2)

$$g(0)=0,$$

 $g(\lambda t)=f(g(t)) \quad (\lambda > 0),$
 $g(t)=(\alpha(t), \beta(t)),$

is called unstable manifold of the transformation f through origin.

The order ρ of g is defined by the following formula:

 $\rho = \lim \log \log M(r) / \log r$

where M(r) is the maximum value of $|\alpha(t)|$ on |t|=r.

Proposition 1. $M(r) = -\alpha(-r)$.

Proof. From (2) α satisfies

 $\alpha(\lambda^2 t) = \alpha(t) + c\alpha(\lambda t)(1 - \alpha(\lambda t)).$ (3)

Since $\alpha = \sum \alpha_n t^n$, $\alpha_1 = 1$, we deduce that

$$\lambda^2 - c\lambda - 1 = 0$$
 ($\lambda > 0$) and $\alpha_n = \frac{-c\lambda^n}{\lambda^{2n} - c\lambda^n - 1} \sum_{i_1 + i_2 = n} \alpha_{i_1} \alpha_{i_2}.$

From the above identity, we obtain by induction $\alpha_{2n-1} > 0$ and $\alpha_{2n} < 0$. Consequently, we get 3.00

1

$$M(r) = -\alpha(-r).$$
Theorem 1. $\rho = \log 2/\log \lambda.$
Proof. Since
$$-\alpha(-r) = -\alpha(-r/\lambda^2) - c\alpha(-r/\lambda) + c\alpha(-r/\lambda)^2 > c\alpha(-r/\lambda)^2,$$
we get $\rho \ge \log 2/\log \lambda.$ Conversely, we can derive the next inequality.
$$-\alpha(-r) = -\alpha(-r/\lambda^2) - c\alpha(-r/\lambda) + c\alpha(-r/\lambda)^2$$

$$< -\alpha(-r/\lambda^2) + k_1\alpha(-r/\lambda)^2$$

$$< k_2(\alpha(-r/\lambda)^2 + \alpha(-r/\lambda)^2 + \cdots + \alpha(-r/\lambda^{2n-1})^2)$$

$$< k_2n\alpha(-r/\lambda)^2,$$

where n is approximated by $\log r/2 \log \lambda$, and k_1 and k_2 do not depend on r. This implies

$$\rho \leq \log 2 / \log \lambda$$
.

Combining the above relations, we get the consequence.